
Drupal 8 configuration
schema cheat sheet
1.0 - Dec 12. 2014.
Configuration schema in Drupal 8 is used to
describe the structure of configuration files. It is
used to:

• Typecast configuration to ensure type consistency
(to only get useful diffs on deployment)

• Automated persistence of configuration entity
properties (on the top level)

• Automated generation of the configuration
translation user interface 

A simple example
config/install/my_module.settings.yml

Basic schema types
Core provides the following data types. Contributed
modules may define new base types. More are
defined in core.data_types.schema.yml.

type: warning 
message: ‘Hello!’ 
langcode: en

my_module.settings: 
 type: mapping  
 mapping: 
 type: 
 type: string 
 label: ‘Message type’ 
 message: 
 type: label 
 label: ‘Message text’ 
 langcode: 
 type: string 
 label: ‘Language code’

config/schema/my_module.schema.yml

Config key /name

Settings in config

Used internally

for translation

Scalar types

boolean

integer

float

string

uri

email

List types

mapping: known keys

sequence: unknown keys

Common subtypes

label: short & translatable

text: long & translatable

Subtyping
All of configuration
schema is basically
subtyping from existing
types. The simple
example earlier is
subtying mapping with
defined keys that have
their own types.

Label and text are the
most important
subtypes for
translatability. Types
route, filter, mail, etc.
are provided for
common complex
Drupal data structures.

Dynamic type with [type]
Exact types may not be known ahead of time and
may depend on the data. Schema allows to define
types based on the data as well. Let’s say the type
of message may depend on the type value with a list
of messages or a simple warning message. Let’s
use ‘multiple’ for the list case and keep ‘warning’ for
the single line message.

type: warning 
message: ‘Hello!’ 
langcode: en

my_module.message.*: 
 type: mapping  
 mapping: 
 type: 
 type: string 
 label: ‘Message type’ 
 message: 
 type: my_module_message.[type] 
 label: ‘Message’ 
 langcode: 
 type: string 
 label: ‘Language code’

my_module_message.warning: 
 type: string 
 
my_module_message.multiple: 
 type: sequence 
 sequence: 
 - type: string 
 label: ‘Individual message’

config/schema/my_module.schema.yml

config/install/my_module.message.single.yml

type: multiple 
message: 
 - ‘Hello!’ 
 - ‘Hi!’ 
langcode: en

config/install/my_module.message.multiple.yml

Dynamic element

type based on data

Applies to a set of
config keys

Fields, entity displays, views, blocks, etc. use this
extensively to define pluggable types.

Schema debugging
To debug configuration schemas use the Configuration
Inspector module (http://drupal.org/project/
config_inspector) which helps you find schema
mismatches with active configuration and inspect how
your schema is applied to your configuration.

Schema testing
All TestBase deriving tests in core now use
$strictConfigSchema = TRUE which results in strict
scheme adherence testing for all configuration saved.
Only opt out of this is you really need to. Your schema
should match your data and pass this test.

More documentation
See https://www.drupal.org/node/1905070 for even
more configuration schema documentation and
examples.

Issues?
• For issues with core configuration schemas, tag them

with ‘Configuration schema’ and ‘Configuration
system’ and pick the appropriate module as
component.

• For issues with the configuration schema system itself,
use the ‘configuration system’ component.

Created by Gábor Hojtsy 
https://www.drupal.org/user/4166/contact

Dynamic type with [%parent]
All dynamic references are enclosed in [], like with
[key] above. If the data is not on the same level, you
can reference the parent as well with %parent.
Restructuring the previous example:

type: multiple 
message: 
 data: 
 - ‘Hello!’ 
 - ‘Hi!’ 
langcode: en

config/install/my_module.message.multiple.yml

type: warning 
message:  
 data: ’Hello!’ 
langcode: en

config/install/my_module.message.single.yml

Now the type indication is one level up:

messages:  
 ‘single:1’: ’Hello!’ 
 ‘single:2’: ‘Hi!’ 
 ‘multiple:1’: 
 - ‘Good morning!’ 
 - ‘Good night!’ 
langcode: en

config/install/my_module.messages.yml

This is now a list of arbitrary message element.

my_module_messages: 
 type: mapping 
 mapping: 
 message: 
 type: sequence 
 label: ‘Messages’ 
 sequence: 
 - type: my_module_message.[%key] 
 langcode: 
 type: string 
 label: ‘Language code’ 
 
my_module_message.single:*: 
 type: string 
 label: ‘Message’ 
 
my_module_message.multiple:*: 
 type: sequence 
 label: ‘Messages’ 
 sequence: 
 - type: string 
 label: ‘Message’

config/schema/my_module.schema.yml

Dynamic type with [%key]

my_module_message.*: 
 type: mapping 
 mapping: 
 message: 
 type: mapping 
 mapping: 
 data: 
 type: my_module_message.[%parent.type]  
 label: ‘Message’ 
 
… rest is same as above …

config/schema/my_module.schema.yml

Type one level up

Arbitrary message list

Type is in the key

Wildcard to match
any item of this
type.

http://drupal.org/project/config_inspector
https://www.drupal.org/node/1905070
http://drupal.org/project/config_inspector
https://www.drupal.org/node/1905070
https://www.drupal.org/user/4166/contact
https://www.drupal.org/user/4166/contact

