
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Control Engineering and

Information Technology

Multilingual Web Applications

with Open Source Systems

Gábor Hojtsy (gabor@hojtsy.hu)

Budapest, May 18, 2007

Consultant:

Péter Hanák (hanak@inf.bme.hu)

Thesis Assignment

Multilingual Web Applications with Open Source Systems

Tasks:

1. Define the characteristic requirements of multilingual web sites compared to mono-

lingual implementations

2. Demonstrate and classify some of the popular existing open source systems used for

multilingual web sites

3. Explain the examined systems’ major weaknesses and the possible solutions

4. Design a prototype implementation for one of the examined systems

5. Implement some of the key elements in the system

6. Summarize your findings and explain further development opportunities

i

Placeholder page for Hungarian version of the thesis assignment not included in this document.

ii

Declaration

I hereby declare that this thesis is entirely the result of my own work except where

otherwise indicated. I have only used the resources credited in the list of references.

Gábor Hojtsy

iii

Nyilatkozat

Aluĺırott Hojtsy Gábor, a Budapesti Műszaki és Gazdaságtudományi Egyetem hallgatója

kijelentem, hogy ezt a diplomatervet meg nem engedett seǵıtség nélkül, saját magam

késźıtettem, és a diplomatervben csak a megadott forrásokat használtam fel. Minden

olyan részt, melyet szó szerint, vagy azonos értelemben de átfogalmazva más forrásból

átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hojtsy Gábor

iv

Contents

Thesis Assignment i

Declaration iii

Abstract viii

1 Introduction 1

2 Multilingual Web Site Requirements 3

2.1 Terminology . 3

2.2 Web Standards . 4

2.2.1 Internationalized Resource Identifiers 5

2.2.2 Character Encoding . 6

2.2.3 Language Information and Text Direction 7

2.3 Separation of Content and Presentation . 8

2.4 Multilanguage Interface and Content . 10

2.4.1 Types of Foreign Language Based Web Sites 10

2.4.2 Distinguishing Interface from Content 12

2.4.3 Translation Friendly Composite Text 13

2.4.4 Content Creation Workflow . 15

2.5 Translation Outsourcing Solutions . 15

2.5.1 Gettext . 16

2.5.2 Computer Aided Translation Tools 16

2.6 The Scope of My Thesis . 18

3 Popular Systems Used for Multilingual Web Sites 19

3.1 Joomla . 19

3.1.1 Included Language Support . 19

v

CONTENTS

3.1.2 JoomFish . 20

3.1.3 Evaluation . 22

3.2 TYPO3 . 22

3.2.1 Interface Translation . 23

3.2.2 Multilanguage Content Method . 23

3.2.3 Multilanguage Content Integration Method 23

3.2.4 Evaluation . 25

3.3 Plone . 25

3.3.1 Interface Language Support . 25

3.3.2 LinguaPlone, XLIFFMarshall . 26

3.3.3 Evaluation . 27

3.4 Drupal . 27

3.4.1 Interface Language Support . 28

3.4.2 Content Translation Support . 28

3.4.3 “Internationalization” Module Package 28

3.4.4 “Localizer” Module Package . 29

3.4.5 Evaluation . 30

4 A Comparison of the Examined Solutions 31

4.1 Language Management and Detection . 31

4.2 Interface Translation . 32

4.3 Content Translation . 33

4.4 Permissions and Workflow . 34

4.5 Comparison tables . 36

4.6 Choosing a System for My Implementation 38

5 Defining Requirements for a Drupal Based Solution 39

5.1 Drupal Architecture . 39

5.2 Planned Language Architecture . 41

5.3 Source Code Based Interface Translation 41

5.3.1 Installer Localization Support . 42

5.3.2 More Efficient Translation Packaging and Importing 42

5.3.3 Local Functionality with Custom Install Profiles 43

5.3.4 Fixing Logic Problems and Adding Smaller Features 44

5.4 Language Management Functionality . 44

5.5 User Specified Content Translation . 45

vi

CONTENTS

5.5.1 Running Multiple Sites on the Same Code Base 45

5.5.2 Types of User Defined Content in Drupal 45

5.5.3 Content Language . 46

5.5.4 Content Translation . 47

5.5.5 Dynamic Text Translation . 47

5.6 Translation Workflow . 48

5.6.1 Limiting Permissions Based on Workflow 48

5.6.2 CAT Based Workflows . 49

6 Implementing a Solution with Drupal 51

6.1 Source Code Based Interface Translation 51

6.1.1 Installer Localization Support . 51

6.1.2 More Efficient Translation Packaging and Importing 52

6.2 Language Management Functionality . 53

6.3 User Specified Content Translation . 55

6.3.1 Content Language . 55

6.3.2 Content Translation . 56

6.3.3 Dynamic Text Translation . 56

6.4 Translation Workflow . 58

6.4.1 Limiting Permissions Based on Workflow 59

6.4.2 CAT Based Workflows . 59

6.5 Evaluation . 61

7 Summary, Future Directions 64

Acknowledgements x

Glossary xi

List of Figures xiv

List of Tables xv

Bibliography xvi

vii

Abstract

Modern web sites target people across country borders and within countries where multiple

languages are spoken. When serving such an international and multilingual community,

we need to take into account several factors in order to support these needs and effectively

reach our target group.

In my thesis I investigate these special factors that add to common web sites’ needs

and often require a different approach to backend development. I also explain some of

the standards, recommendations, and best practices that should be followed for this type

of web site.

Because most present-day web sites are built on an existing framework that allows

developers to reuse established solutions and thus save on development costs, my main

targets of examination are these frameworks, the so called content management systems.

By comparing and contrasting their strengths and weaknesses as they relate to my focus

areas, I devise an implementation plan to fulfill the outlined requirements with the Drupal

content management system.

Working with a well-known framework means that my results are critiqued and tested

by people interested in using them in real life projects, so the solutions I present here

should be both practical for web site implementors and usable for site editors. Although

I work in many areas on the multilanguage spectrum, focusing on key aspects allows me

to deliver solutions and at the same time open the door for later developments.

My results are freely available to every Drupal user and developer, since they are

either integrated into the Drupal core system or are downloadable as Drupal extensions.

Further, since the software I have developed is open source, web site implementors can

easily adapt it to their special multilanguage requirements by looking under the hood.

viii

Kivonat

A modern webhelyeket sokféle nyelvet használó különböző országok, valamint többnyelvű

országok lakosai látogatják. Amikor ilyen nemzetközi és több nyelvet beszélő célközön-

séghez szólunk, sokféle szempontot kell figyelembe vennünk, hogy speciális igényeiket

hatékonyan ki tudjuk szolgálni.

A diplomatervemben ezeket az átlagos webhelyek igényeit meghaladó speciális szem-

pontokat vizsgálom meg, amelyek a háttérprogramok kialaḱıtásakor a szokásostól eltérő

megközeĺıtést igényelnek. Bemutatom a kapcsolódó szabványokat és ajánlásokat valamint

követendő gyakorlatokat, melyeket az ilyen t́ıpusú webhelyek késźıtésekor figyelembe kell

vennünk.

Mivel napjainkban a legtöbb webhely egy meglévő keretrendszerre épül, amely lehetővé

teszi, hogy fejlesztési költséget is megtakaŕıtva már bevált megoldásokat hasznośıtsunk

újra, a vizsgálatom célpontjai az ilyen keretrendszerek, az ún. tartalomkezelő rendsze-

rek. Először néhány nýılt forráskódú tartalomkezelő rendszer erősségeit és gyengeségeit

hasonĺıtom össze a többnyelvűśıtés szempontjából, majd az igények kieléǵıtésére meg-

valóśıtási tervet dolgozok ki a Drupal tartalomkezelő rendszerrel.

Egy ismert keretrendszer alkalmazásának az egyik előnye az, hogy a készülő megol-

dásokat gyakorlott tervezők és fejlesztők tesztelik és b́ırálják, ami garancia arra, hogy

e megoldások haszonosak legyenek a webhelyek fejlesztői számára és jól használhatók

legyenek a tartalomszerkesztők szemszögéből is. A többnyelvűśıtés, mint látni fogjuk,

sokféle kérdést vet fel, közülük néhány kulcsfontosságú szempontra fogok koncentrálni a

diplomatervben. Így használható megoldásokat tudok kidolgozni, miközben a lehetséges

későbbi fejlesztéseket is figyelembe tudom venni.

Az eredményeim szabadon és ingyenesen elérhetők minden Drupal felhasználó és fej-

lesztő számára, részben a Drupal alaprendszerbe beépülve, részben kiegésźıtő modulok

formájában. A kifejlesztett szoftverelemek nýılt forráskódúak, új webhelyek kialaḱıtása-

kor igény szerint átszabhatók.

ix

Chapter 1

Introduction

The World Wide Web was an international space from its start with visitors who speak

different languages and reside in various countries. Even with only taking multilingual

countries into account (like Canada and Belgium), our web presence needs to cater to

visitors speaking different languages. If we add international requirements to our task

list, we should also consider cultural differences, local customs, time zones, shipping costs,

and other issues.

As the user base of web sites and services expands, it becomes natural to provide

interface and even content in more languages. Because existing monolingual web site im-

plementations are often complicated to migrate to a multilanguage model, it is important

to keep this issue in mind when planning a new project that might involve support for

multiple languages.

Fortunately building web sites has become easier in recent years with many content

management systems now available that allow “click and type” web site creation. These

systems help users create and manage content, and often even a community, online. Open

source content management solutions first widely became popular among small busi-

nesses and hobbyists, and eventually big companies and institutions like Yahoo, NASA,

Lufthansa and Nokia realized the benefits offered by these systems and deployed them.

Most of these systems provide convenient ways to manage web site’s architecture and

content added by users and editors of the web site. Although these systems are developed

by international communities, multilanguage features are not always integrated into them.

As noted, these systems are used in situations with widely different needs, from powering

simple blogs to major government web sites (as is the case of Brazil [1]). Many of these

different use cases share the requirement to support multilanguage features, even if the

exact needs in these use cases are different. A single user blog could have content in

1

different languages, while a complex government site requires parts of its web presence in

multiple languages at once.

Mature multilanguage support guides web site visitors to the language version of the

content they understand. Content authors and translators can be facilitated with an

editorial workflow tailored to their special requirements, possibly including support for

interaction with external professional translation service providers.

In the second chapter of my thesis, I look at the challenges multilingual web systems

face compared to monolingual implementations and then I specify the areas I will look at

in-depth in later chapters. In the third chapter, I examine some of the existing open source

solutions, namely Joomla, TYPO3, Plone and Drupal, and look at their approaches to

multilingual interface and content management. A comparison of these systems follows

in the fourth chapter, based on my focus areas, and it highlights the problems with

implementation of some of the desired features. The fifth and sixth chapters present a

plan to design an improved multilanguage solution based on my research for the Drupal

system, as well as a presentation and evaluation of the actual implementation. Finally, I

summarize my work and outline future challenges in chapter seven.

2

Chapter 2

Multilingual Web Site Requirements

2.1 Terminology

Because the terminology is not clearly defined and is used differently in other papers, it

is important to define the basic terms. For my thesis I followed the definitions set forth

by the World Wide Web Consortium (W3C) Internationalization (I18n) Activity [2].

Multilingual web site A web site available in multiple languages. Several countries

(for example Canada and Belgium) have more than one official language, so a mul-

tilingual web site is not necessarily an international one.

International web site A web site intended to be used internationally. This type of

web site is not necessarily a multilingual one because residents of multiple countries

can speak the same language.

A web site can both be multilingual and international, thus serving people in multiple

countries with different languages available. Unfortunately language alone is not always

enough to consider when presenting information to a web site visitor.

Locale In computing the locale concept refers to a set of rules for presenting information

to a user. Locale includes date formatting, currency, the language variety used,

order of sorting and so on.

A multilingual web site should ideally support multiple locales, so multilocale web site

would be a more accurate term, but this is not used in practice, so I will stick with

“multilanguage” in my thesis and only refer to locales when the difference is important.

Two essential terms are used when explaining the process of making a web site multi-

lingual or international. Internationalization and localization are these two keywords and

3

2.2. WEB STANDARDS

are sometimes used interchangeably although they have very different meanings. Richard

Ishida has good definitions [3] of these terms.

Internationalization Also known as i18n, internationalization is the design and devel-

opment of a product, application or document content that enables easy localization

for target groups that vary in culture, region or language (locale).

Localization Also known as L10n, localization is the adaptation of a product, application

or document content to meet the language, cultural and other requirements of a

specific target market (locale).

This leads to the possibly confusing conclusion that if we want to create a multilingual

web site, we need to internationalize it, since this is the term used to represent adding

capabilities to support multiple locales. Localizing a web site “only” means adding specific

features or content for a particular locale.

Although the World Wide Web was designed to offer interconnected web sites to vis-

itors, more traditional applications also found their way onto the internet, which resulted

in web applications. There are subtly different descriptions for these two terms. Web

sites can be considered collections of interlinked web pages managed together that allow

you to read their contents. Web applications, on the other hand, are applications accessed

through a web server that allow you to do something. While there are clear examples

of both, most web sites are now a mix of pages with application-like functionality. The

multilingual principles discussed in this thesis are equally applicable to traditional web

sites and web applications, so these terms are used interchangeably.

The synergy between these two terms is also driven by Web Content Management

Systems (WCMS or CMS) that offer convenient content management and application

functionality in the same package. The focus of my thesis is web based content, so

Enterprise Content Management Systems (built to handle other types of content, like

word processing documents and spreadsheets created in the enterprise) are out of my

scope.

2.2 Web Standards

When building multilingual web sites, we need to first consider technical requirements

and possibilities. Web standards (recommendations and specifications) define our com-

munication means between web servers and clients, so these must be examined first. It

is important to note that these standards are applicable to single language web sites too,

4

2.2. WEB STANDARDS

although they are not widely known in English speaking areas of the world because the

defaults provided are adequate there, so there is no immediate reason to think of these

building blocks.

2.2.1 Internationalized Resource Identifiers

First we need an address to access a web resource. These days users demand web sites in

their own languages, including both the interface and the address.

Web addresses are typically expressed using Uniform Resource Identifiers or URIs.

The URI syntax, as defined in RFC 3986 [4], restricts addresses to a small number of

characters: upper and lower case letters of the English alphabet, European numerals and a

small number of symbols. Unfortunately a URI does not allow for non-English characters,

which limits its usability internationally. Internationalized Resource Identifiers (IRIs), as

specified in RFC 3987 [5], allow for domain names and paths to contain any Unicode

character, thus allowing for fully localized web addresses. (Unicode is explained in the

next subsection.)

For IRIs to work, the underlying protocol (HTTP, SMTP and so on) should be able

to carry the information, the format used (HTML, XML and others) should support

Unicode characters, the applications handling these formats should be capable of dealing

with them, and the servers hosting the resources addressed should be able to match IRIs

to files and other types of resources. Unfortunately IRI supportive web browsers are not

yet widely used as of this writing. While the latest Microsoft Internet Explorer Version 7

supports IRIs, this browser is not yet adopted by mainstream users. Microsoft Internet

Explorer 6 only supports IRIs with an add-on installed separately. Other browsers have

good support for IRIs as W3C test results show [6].

A basic IRI (eg. http://árvı́z.hu/dokumentumok/védekezés.html) consists of a

scheme (http:// in this case), a domain name (árvı́z.hu) and a path component with

a directory and a file name (/dokumentumok/védekezés.html). More complicated IRIs

can contain a port number, HTTP GET parameters and a fragment identifier, which are

already adequately covered by existing standards, so IRI support evolves around domain

names and path values. Internationalized Domain Names in Applications (IDNAs) are

mappings of Unicode strings to special US-ASCII strings, which map to IP addresses

in the standard domain name system. For example the árvı́z.hu name maps to the

xn--rvz-dla6d.hu domain, xn-- being a prefix to identify the IDNA encoding, rvz

being the ASCII characters from the domain name and the -dla6d suffix encoding the

accented characters. Path components of IRIs are handled by hosts serving the resource

5

2.2. WEB STANDARDS

(a web server in this case).

Current support for IRIs only allow for IDNAs, which build on the existing Top Level

Domain Name (TLD) set. Localized TLDs are still tested by the Internet Corporation for

Assigned Names and Numbers (ICANN) for compatibility [7] and will only be available

when reliable server technology is present and ICANN rules make it possible to get them

registered.

Once widespread support is available for IRIs, multilingual web sites can make use

of them. It is a natural requirement that different language versions of a web site

be made available under local addresses like http://www.coffee-bean-ltd.com and

http://www.kávé-bab-kft.hu, when branding requirements are not going against lo-

calizing the site name.

2.2.2 Character Encoding

Once we have an address, the communication protocol needs to support the encoding of

characters used by the desired languages.

The World Wide Web is powered by the HTTP protocol, of which the 1.1 version [8] is

used widely, as defined in RFC 2616. Section 3.4 of the RFC explains that HTTP shares

the notion of “character sets” with the MIME [9] specification. “Character encoding”

would be a better term as described by the HTTP specification, but the term “character

set” was kept to stay compatible with the MIME standard.

MIME defines a way to represent multipart messages with headers and content in non

US-ASCII encodings. This opened the door for different language encodings to be used

in email and later on the web, when HTTP adopted this specification. Responses by web

servers include a Content-type header, which specifies the content type and character

encoding used. A typical encoding for Hungarian documents is ISO-8859-2 (also known

as Latin-2), which contains proper accented characters for the Hungarian language. This

encoding uses one byte for every character but limits the possible characters to only those

used in Central Europe. The biggest online media outlets, such as http://origo.hu/

and http://mtv.hu/, use the Latin-2 encoding in Hungary as of this writing.

Like Hungarian, every language has one or more specific character encodings assigned

to it, which can be used to deliver content on the web. However this causes the problem

that encoding needs to be tracked and taken care of on every page. To deliver pages in

different languages on the same web site we need our backend software to support every

encoding we will use and utilize the appropriate one when presenting a web page to a user.

One of the bigger problems of this approach is that it is not possible to mix characters

6

2.2. WEB STANDARDS

from different languages on the same page, such as including a Japanese performers native

name in an entertainment news article on one of the above mentioned media outlet pages

while using the ISO-8859-2 encoding.

The Unicode Standard (first published in 1991) was designed by the Unicode Consor-

tium [10] to overcome the limitation of traditional encodings and to allow multilingual

text presentation. It took many years for the standard to become widely used, but it

eventually became a requirement in multilingual systems. Unicode provides a unique

code point (a number) for each character, and then different character encodings can be

used to map these code points to actual bytes for transmission or storage.

There are multiple ways to encode Unicode characters, of which the most popular is

UTF-8 encoding because it is the most compatible with existing ASCII systems and still

enables users to simultaneously use the full Unicode character set. UTF-8 is a variable-

width encoding, using one to four bytes per code point. UTF-8 is now the de facto

standard for multilingual web environments, and so this is the encoding I have chosen to

use throughout my thesis. This allows for multiple language characters to be used on the

same web page as well as allows common algorithms to be used for character handling

and filtering in content management systems.

The W3C has a good explanation of using character encodings in (X)HTML and

CSS [11]. The most important rule is that the encoding should be specified in both the

HTTP headers and the (X)HTML or CSS document for best compatibility.

Web browsers widely support web pages written in Unicode encodings, so it is possible

to build on this feature.

2.2.3 Language Information and Text Direction

Section 8 of the HTML 4.01 recommendation [12] specifies three key attributes of HTML

that allow for language identification and directionality setting. The lang attribute,

when applied to an element, specifies a language code that defines the base language of

the element’s attributes and content. This is useful for a number of reasons, as explained

by the recommendation referenced above:

• Assisting search engines

• Assisting speech synthesizers

• Helping a user agent select glyph variants for high quality typography

• Helping a user agent choose a set of quotation marks

• Helping a user agent make decisions about hyphenation, ligatures and spacing

• Assisting spell checkers and grammar checkers

7

2.3. SEPARATION OF CONTENT AND PRESENTATION

The HTTP Content-language header can also be used to specify language, but HTML

attributes should override the language where appropriate in a mixed language context.

The hreflang attribute has a similar role. It informs the user agent of the language

of a resource being linked to in an HTML link tag.

Language codes in HTML were originally constructed according to RFC 1766, which

was most recently replaced by RFC 4646 and RFC 4647 and are jointly referred to as

BCP 47 [13]. The structure of a language code is as follows:

language [”-” script] [”-” region] *(”-” variant) *(”-” extension) [”-” privateuse]

The only mandatory part is a language code, which can be followed by an optional

script name (Latin, Cyrillic and so on), a regional variant identifier (for example US and

UK in English), any number of variant and extension identifiers and an optional private

suffix (maintained for backwards compatibility). More information about these tags can

be found in the W3C I18N article database [14].

Because different scripts are used for specific languages, it is possible that text be

written left-to-right (LTR) or right-to-left (RTL) independently of the language being

used. Latin scripts from several languages appeared through the years, replacing or

adding to RTL written ones. Although Unicode defines a few control characters to specify

direction, it is generally suggested that HTML documents should not use them and build

on the related HTML features instead.

HTML provides the dir attribute with RTL and LTR as possible values, which allows

for text direction specification. A bidirectional algorithm is specified to handle cases when

RTL and LTR text is mixed, and a <bdo> tag is defined to explicitly specify direction

when the algorithm gets to an undesired result without further instructions.

As direction is actually presentational information, CSS 2 [15] also has support for

the direction property to specify RTL or LTR as well as the unicode-bidi property to

affect the bidirectional algorithm.

XHTML carries both the language and direction attributes over from HTML, except

that the lang attribute is replaced with the XML standard xml:lang attribute.

The W3C I18N FAQ has an extensive document [16] on text directionality.

2.3 Separation of Content and Presentation

Once we have the technological base to build on, we need to find ways to utilize it to

benefit our users. When designing a web site with multilingual requirements, separation

8

2.3. SEPARATION OF CONTENT AND PRESENTATION

of content and presentation becomes vital to the success of the project. The key rules are

the following:

1. Use CSS extensively. Richard Ishida [3] uses the example of emphasized Japanese

text. When resorting to HTML or <i> tags for emphasis, the Japanese letters

need to be written in bold or italics. However the Japanese would use dots above the

text for emphasis or a different background color, keeping the text itself intact. If

we build on CSS, different style sheets for different languages can provide adequate

display rules for emphasized text. This also helps prepare for bidirectional text

presentation.

2. Avoid text on images when possible. Every image with text on it is an immedi-

ate target for replacement on translated versions of the page. Regardless of whether

it is a part of the site design or user specified content, it needs to be translated. The

web site should be designed so that images are replaceable when different languages

are used.

3. Prepare for text expansion and contraction. It is common to design web pages

or even smaller areas (like sidebars or blocks) on web pages for a specified screen

width. If the width of these parts is not adequately chosen, translated versions

of the text written into them can easily not fit or leave an undesired empty area.

The OmniLingua Resource Center has good source data [17] on language expansion

and contraction. This data shows that English to Finnish translation results in

contraction up to 20-30%, while the word length increases by 10-15% at the same

time. English to Spanish translation however can lead to 25% longer text. This

means that if a layout design does not allow for text to expand or breaks when text

gets significantly shorter, it is not suitable for multilingual needs.

4. Think about possible cultural differences ahead of time. When serving an

international community, application of colors, alignment and imagery can have very

different effects. Jakob Nielsen’s Designing Web Usability has a perfect example [18]

with an ad showing a switch. It is turned downwards and the ad says: “Turn this

on for more information.” Nielsen notes, that if a switch is turned downwards,

it means it is already turned on in many countries around the world. Although

cultural differences are not a focus of this thesis, it is important to think about

these differences when planning content.

9

2.4. MULTILANGUAGE INTERFACE AND CONTENT

2.4 Multilanguage Interface and Content

Single language web site builders are in a convenient position to build a system in their

native language and post content in the same language. However when building on an

existing system, most of the time an English-based engine is working behind the scenes.

This is because English is the most common language used by developers around the world,

and thus has become a de facto default language for CMS products. Creating a single

language web site in a different language with such a system could immediately become

difficult, if internationalization is not taken into account in that product. Going further

into the requirement of having a multilingual interface and content opens up new layers

of required features. The interface can consist of built-in text provided by the system, as

well as input provided by the administrators (site name, menu items, disclaimers, etc.).

2.4.1 Types of Foreign Language Based Web Sites

I asked the Drupal community to provide use cases of their existing and planned inter-

nationalized web sites in 2006 [19]. Going through the data provided and filtering the

comments, I have identified the following practical use cases for web sites built with an

English based system but in need of support for foreign languages.

English (factory default) only This is the simplest use case. In fact it means that the

English “factory default” text can be used in the project and that English content

is posted. User specified interface text is in English. This monolingual scenario is

the simplest, and is always supported in every system.

English (customized) only When one needs a customized English language web site

(different site design or different wording for text accounting to US and British

English differences or stylistic requirements, for example) it is still quite close to

what the system provides by default. Only some text and design elements need to

be changed. User specified interface text is in English.

Single foreign language only This monolingual scenario is taken into account when a

web site is built with a system, but the factory default language should be completely

replaced. This requires that the text of the interface be completely translatable and

that the language of the resulting site be configurable so the generated web pages

show the right content with the proper language code. User specified interface text

is given in the actual language used.

10

2.4. MULTILANGUAGE INTERFACE AND CONTENT

Multiple interface languages only On a photo showcase site or an external data based

web site (like a search engine) where content is not a target for translation, it is still

a common requirement to allow the interface to be presented in various languages.

Users should have the possibility to choose the desired interface language, and the

system might choose a reasonable default for the user when visiting the site for the

first time. User specified interface text is given in all languages used.

Multilanguage content on the same site, not associated Multilanguage blogs and

international community news sites are typical examples of the use case when post-

ing of content in multiple languages is a requirement, and these posts remain stand

alone pieces and not connected to each other (as translations of the same content).

Content needs to be marked as being in a specific language selected from multi-

ple languages. Interface language availability for the same languages might be a

requirement when building such sites, in which case user specified interface text is

given in all languages desired.

Multilanguage content implemented as sub-site Many big international companies

have regional sub-sites for their local businesses. However these sites use a slightly

different page layout and design elements, and often have a distinctively different

structure of pages. For example, these sites do not require the ability to jump to

the driving directions page of the German office from the driving directions page of

the French office, especially that there is no requirement that both pages exist and

are in a similar content structure. This kind of site design allows for the best local

adaptation, but does not allow for content to be related between the sub-sites. User

specified interface text is managed uniquely on all sub-sites.

Multilanguage content with translation association The most complete approach

to multilingual site building is to have copies of the same content in different lan-

guages that are linked together so the system can show the user an initial version

and then the user can choose a different translation if required. In this use case, the

system can show the appropriate interface for the content language desired. The

main challenge is that if content is not available in the desired language, there is no

direct answer to what should happen: a fallback to some other language, an error

message and a redirection to a search page are all possibilities. A system should sup-

port different approaches. The design of such a system allows for complex workflows

for site administrators and content authors too. Translations of the same content

can be monitored for timeliness and multiple language versions of the same content

11

2.4. MULTILANGUAGE INTERFACE AND CONTENT

can be required to be written before a text is published, for example. User specified

interface text is given in all languages.

Figure 2.1: Types of foreign language based web sites

As the figure shows, sub-sites actually have no multilanguage requirements and as a

result, workflows and permissions are not related to available languages. This is often

a practical way to side-step issues with multilingual content handling but results in a

weak user experience and uncontrolled editorial flow. It should be noted, however, that

any of the site types involving one or more content languages or at least one non-default

interface language require internationalization. Although it is possible to build sites with

requirements in most other parts of the type matrix shown above, only the types shown

are relevant in this thesis.

Naturally actual web projects often move between these models, so an ideal system

should support seamless adaptation to the chosen type of site.

2.4.2 Distinguishing Interface from Content

In traditional desktop applications it is quite straightforward to translate the application

interface. In open source systems, this traditionally involves the following steps:

1. The translator runs an extractor program on the source code, which typically gen-

erates a text based file in a standard format with interface strings found in the code.

Alternatively, programmers can place identifiers in the source code, and a resource

file can define the strings for the identifiers.

12

2.4. MULTILANGUAGE INTERFACE AND CONTENT

2. This file is loaded into a special program or a simple text editor, and text is trans-

lated to the required language. A complete translation is saved.

3. Packages of the translation are distributed and – after imported or installed – can

be used with the application.

With web site management systems, however, things are very different. First, there is

a set of application provided interface elements in some systems written in the “factory

default” language, as mentioned above. Then there are possible modules or plugins added

to the system with their own interface elements. Site designers refine and extend the built-

in interface of the application to be better suited for the actual web site’s needs. Finally

there are interface elements specified by the site administrator. A prime example of these

are menu items and other navigational helpers, which are required to be customized by

the maintainers of a web site.

The application and plugin provided user interface elements are possible to be treated

like classic desktop applications, translated via an external file generated with an extractor

program. The advantage of this approach is that translation teams can provide language

files before someone builds a multilanguage site with the system.

Custom web site design elements and site administrator specified text and images are

by their nature specific to the actual project being worked on. In the first case, where the

custom elements will not change often, we can reuse the desktop application workflow, but

with site maintainer specified text and images, a web based frontend should be provided

for the comfort of the user.

Distinction of interface from content is especially important in some of the use cases

described above in which the web site might use different languages for content and in-

terface presentation. Higher level tools for interface and content translation are discussed

in the next section.

2.4.3 Translation Friendly Composite Text

When working with interface text, translating complete literal sentences is fairly straight-

forward when given a simple mechanism to look up a translation for a specific language.

However, composing text of variable parts brings a few issues worth examining. While

working on better translation support for Drupal and by looking through recommenda-

tions, I have identified the following common issues (examples in PHP, the imaginary

translate() function plays the role of a lookup function for translations, working in the

context of the current language used):

13

2.4. MULTILANGUAGE INTERFACE AND CONTENT

1. Composed text should not be translated as a whole. Once we put variable

text segments into the composition, we end up with a potentially endless number

of strings to translate. In case we use translate(’You have chosen ’. $type),

we will have an infinite number of strings for translation, because $type could be

anything and is only filled in runtime. Sometimes a set of possible $type values

can be collected, but if we think about concatenating numbers into strings the same

way too, that leads to an even worse situation.

2. Different word ordering should be supported. If a system does composi-

tion with exact variable placement, it is not going to be easily translatable. If we

write: translate(’You have chosen ’). translate($type) using string con-

catenation, the translator has no way to reorder the words in the sentence, although

grammatical rules would enforce reordering in several languages. This is still some-

what better than the solution in the previous example, but using translate(’You

have chosen %type’, array(’%type’ => translate($type))) would be ideal,

given that translate() supports replacement of %type to the specified value.

3. Plural forms of languages are different. When displaying counts of things,

English has the simple rule that “item” is used when there is only one, and “items”

is used when there are multiple. Other languages, however, have more complicated

rules for plurals. Polish and Russian languages have three types of plurals with

different rules for when each of them is used. A sample from the Polish Drupal

Aggregator module translations [20] shows an example of how are these used.

Expression Translation

if n == 1 %n element
else if n%10 >= 2 and n%10 <= 4 and (n%100 < 10 or n%100 >= 20) %n elementy

else %n elementów

Table 2.1: Polish plural forms example

The software should be aware that different plural form rules apply to different

languages and should support the available format. To be able to use this knowledge

one needs to use a special translation function, which I will call translate plural()

here. The usage of this function could be: translate plural($count, ’1 item

removed’, ’%count items removed’) to provide a sensible default for English,

yet make it possible to use plural forms.

14

2.5. TRANSLATION OUTSOURCING SOLUTIONS

4. Specific contexts might need different translations. For example “off” in

’Turn off the %object’ needs different translations in Hungarian depending on

what the object is. If the sentence says “Turn off the light,” then the correct

Hungarian translation is “Kapcsolja le a viláǵıtást”, while in the case of “Turn off

the TV,” “Kapcsolja ki a telev́ıziót” is the only appropriate translation. Similar

problems arise with languages having different articles. ’The %fruit discount

expires tomorrow.’ would have “the” translated differently to Hungarian, de-

pending on what the value of %fruit starts with. The “alma” (apple) fruit would

need the “az” article, but the “körte” (pear) fruit would only allow for “a”.

2.4.4 Content Creation Workflow

When building a multilanguage web site, there are different workflow requirements de-

pending on the type of the site being built. Even on a monolingual site, content editors

might need to read through and edit text before it is published. When multiple languages

are taken into account, this adds an additional layer of complexity.

Users should be able to specify the requirements for their desired workflow, and the

system should be able to support these requirements and execute the workflow. Some

content might need to have translated counterparts (like news articles on a company web

site), while other content will definitely not have them (like forum posts and comments).

The user should be guided to translate content easily when required and should not be

bothered when translation is not an option.

A more complicated Belgian government use case in my research [19] showed that

sometimes text must be available (and approved) in a set of languages before any piece of

that content set can be published. In this use case, the official languages (French, Dutch

and German) should have the content available already, before it can go to the live web

site. A professional grade system should allow for such complicated workflows to be built.

2.5 Translation Outsourcing Solutions

Different systems store and use content and interface translations in incompatible ways, so

there is a natural need to integrate these solutions. To do this, a data interchange format

supported on both ends is required. Translation support should integrate with external

professional translation tools, including automatic draft translation services, translation

memories, and spell checkers, and should do this by supporting common formats.

15

2.5. TRANSLATION OUTSOURCING SOLUTIONS

2.5.1 Gettext

Most open source applications implement an interface translation system based on GNU

Gettext [21], which became the de facto standard of interface translations. Three file

types are supported by the Gettext tools:

Portable Object Template (POT) Text file with source message strings (usually in

English). It can be used to start a new translation or update previously done

translations with new interface text from the application.

Portable Object (PO) Text file with source messages translated to a specific language.

Some applications can directly import and export Portable Object files, while others

need a binary representation.

Machine Object (MO) A binary (compiled) representation of a Portable Object file.

As with compiled programs, editing of Machine Object files directly is not possible.

Several tools exist to generate POT files and facilitate the translation of these into

given languages. When new software releases are published, new templates are gener-

ated and the previous translations are merged with these templates, forming the base

for updated interface translation. Gettext only supports pairs of strings or at most lan-

guage specific plural formula usage, so it cannot be efficiently used for content translation

interchange, which would involve large amounts of strings and other related media.

2.5.2 Computer Aided Translation Tools

Computer Aided Translation (CAT) is the process of supporting translators in reusing

previously translated text for new works, as well as archiving their current work for

the future. The Localization Industry Standards Association (LISA) [22] maintains a

working group, which developed the Translation Memory eXchange (TMX) format as

a vendor-neutral open XML standard. The OASIS XML Localization Interchange File

Format (XLIFF) builds on TMX, defining a markup format and interchange language for

localizable data, allowing interoperability between tools. As of this writing, TMX 1.4b

and XLIFF 1.2 are the actual stable recommendations.

The philosophy behind CAT based workflows is to extract resources from native for-

mats into a common standard localization format that is easier to build tools for. While

Gettext is ideal for interface translation based on application source code, Java property

files and HTML content are among other popular formats that need tools for translation

16

2.5. TRANSLATION OUTSOURCING SOLUTIONS

Figure 2.2: Computer Aided Translation workflow with “minimalist” approach

and a common translation memory database to reuse. Using XLIFF, the translated re-

sources are merged back into their native format when the translation is complete, and

the results are stored in a translation memory. Filters and specifications for converting

to and from XLIFF have been developed for a number of file types, including Gettext

Portable Objects, HTML and Java property files. Of course, not all these formats support

the complete spectrum of XLIFF features, but the goal to not loose important translation

data along the way is met by these mappings.

There are two types of mapping methods to choose from: a “minimalist” and a “max-

imalist” approach, as referred to by the XLIFF standards. These differ in how markup

information is retained throughout the translation process. The minimalist approach

requires a skeleton generated from the original document and only the translatable re-

sources extracted to XLIFF (possibly with some inline markup). Inline markup cannot be

removed completely because translators need to know where links and formatting appear

in source documents, and they need to be able to insert equivalent markup in the trans-

lations they create when the target language requires it. With the maximalist approach,

however, all structural and inline markup is encoded in the XLIFF document, and no

skeleton is used.

XLIFF has a small number of generic tags used for mapping markup from any type

of source document. The rules of the machine text extractor define what approach is

used. In case of the minimalist method, placeholders are used in the skeleton to identify

17

2.6. THE SCOPE OF MY THESIS

relations with parts of the XLIFF file. The extracted text is pre-translated from the

previously collected translation memory, then reviewed and fixed by a human translator.

The resulting translations are stored in the translation memory and a reverse conversion

takes place to generate the translated document (possibly using a skeleton if available).

There are cases when the machine extractor would not be able to automatically identify

translatable text or would offer parts (the author name of a document for example)

erroneously for translation. A similar problem is that most source formats do not allow

placing notes into the documents to instruct or help translators. Therefore the World Wide

Web Consortium (W3C) developed a recommendation to aid machine extraction. The

Internationalization Tag Set (ITS) [23] recommendation is a fresh development (reached

the recommendation stage on April 3, 2007) that specifies a common set of tags for XML

based formats to mark parts of the documents as “not for translation”, or “written in

a right to left script”. ITS also allows for placing notes for translators and marking up

terminology for glossaries.

While XLIFF/TMX (and hopefully soon ITS) based solutions are reusable and basi-

cally became an industry standard with the most professional tools like Systran [24] and

SDL Trados [25] using them, only a few open source solutions exist to leverage a CAT

based workflow, and these are not widely deployed.

2.6 The Scope of My Thesis

Although there are several key issues around multilingual web sites, a more focused scope

should be defined for this thesis. As the assignment instructed, I will look into content

management systems. Higher level language management, multilanguage content, inter-

face translation support and translator workflow features are in my focus. These form a

set of technologies that enable the internationalization of products. Both the user inter-

face for these features and the implementation are important in designing a solution that

fits the types of multilanguage sites outlined in this chapter.

18

Chapter 3

Popular Systems Used for

Multilingual Web Sites

To find implementation ideas and a target platform to work with, I looked through some

of the most popular open source content management systems used to build multilingual

web sites and examined their approaches to storage, workflow and display of multilingual

text.

3.1 Joomla

Joomla [26] is one of the most well known open source CMS solutions. It is regarded

as one of the most user friendly tools and has won several awards including the Packt

Publishing Open Source CMS Award in 2006 [27]. Given that the success of a good

multilingual system starts at the user interface, Joomla was a logical choice to look into

as a possible solution. As of this writing, Joomla 1.0.12 was the latest stable version (1.5

being in the beta stage) and the one I have worked with.

3.1.1 Included Language Support

Joomla has interface language translation support included in its default installation.

This allows for uploading pre-created packages of translations, which get saved into the

file system and offered to the administrator to help set the interface language. This system

only allows the upload of pre-created language packs, and adding a new language is not

possible without installing a translation at the same time.

Interface translations are defined through PHP constants and composite strings are

19

3.1. JOOMLA

specified with placeholders in the sprintf() format, like "Please enter a valid %s".

Different plurals are not supported, but the order of placeholders can be changed thanks

to sprintf().

3.1.2 JoomFish

JoomFish [28] (created by Alex Kempkens) is the official multilingual content support

component. It adds a general translation layer on top of the Joomla database handler. I

have examined JoomFish 1.7, which is compatible with Joomla 1.0.12. The configuration

of this component depends heavily on the actual database tables and fields, so web based

configuration is not possible. XML based configuration files set the translatable table

fields and allow for the translation of specific parts of the database.

A generic web based editor is provided to type in translations for these fields. Because

only text based fields can be translated, simple text editors are provided. In case there

is structured information stored in a text database field (like an image file name with

metadata), the user must know the structure and be sure not to break its value when

editing. Helpers are not included to empower the user. Only single table data is editable,

and relations of data (like content to category relations) are not possible to modify.

Figure 3.1: Image control on the original content editor page (arranged horizontally)

As the figures show, the image selection control on the content editing page allows

the author to browse previously uploaded images, select a list of images used in the

current post and preview the selected item. Images can have alignment, alternate text

and caption properties set. Joomla provides a rich editing interface for these details.

20

3.1. JOOMLA

Figure 3.2: Image control on the translation page

However, translators have some difficulties getting an editing area with the serialized

information of images. Because the JoomFish translation system is as generic as possible,

it does not know that an image editing user interface should be displayed here and it only

knows that a specific field of a database table should be edited.

On loading Joomla, the implementation of the JoomFish component replaces the

global database layer with its own database abstraction layer. The multilanguage database

layer replaces load, update and insert operations, so the translated text can be written

into the dedicated JoomFish table with references to the original table and primary key.

Figure 3.3: Database model of JoomFish with some sample data

When loading an object (content, menu item, category and so on), the replaced

database layer loads it from the original table and the associated translations from its

own table, and then rewrites the object’s values to reflect the translated state. There are

some fields excluded from translation, like the author names, published flags, and created

dates, and therefore it is not possible to have a different author or publication state for a

translation.

21

3.2. TYPO3

The language used to display a page depends on several factors, if the administrator

enables automatic language switching. An HTTP GET parameter specifies the language

when available, or a previously set cookie can be used if given. The HTTP Accept-

language value set in the user’s browser is used for language detection if a specific language

is not requested. Finally the site has a default locale set if nothing else specifies a correct

language.

3.1.3 Evaluation

Joomla by default allows interface translation. With JoomFish it also provides basic

content translation, using a very extendable architecture that can be configured for any

database table with simple XML files. This general approach has some drawbacks, though:

it is not possible to conveniently translate non-textual content, only a given set of proper-

ties are translatable on any content object, and finally the double loading of data results

in a performance impact on the database. Unfortunately, Joomla does not come with any

tools to support a CAT workflow and XLIFF support is scheduled for JoomFish 2.0 at

the earliest [29] (currently 1.8 being under development).

From a visitor’s point of view, the most problematic aspect of Joomla is that the

language code is not kept in the URL. Once someone visits a page with a language code

in the URL, a cookie is set with the language code and then shorter web addresses are

used. This makes it impossible to send links pointing to a particular version of the content

and index different language versions by search engines.

Another basic problem with the Joomla system is that it tries to use UTF-8 all around

the web site, but the default templates specify ISO 8859-1 encoding for English and ISO

8859-2 for the Hungarian translations (although the translation files use UTF-8 charac-

ters). Evidently, encoding handling is not yet clear in the system.

3.2 TYPO3

TYPO3 [30] is one of the most complex and, at the same time, most powerful open source

systems on the market. The complexity is easily shown by looking at the TypoScript

declarative language especially developed for TYPO3, although the system is generally

built on a PHP and database driven backend. It has built-in support for interface lo-

calization as well as the so called “multilanguage content” and “multilanguage content

integration” methods for content translation. Being built-in features, there is no need to

install additional components, the existing solutions are tightly integrated into the sys-

22

3.2. TYPO3

tem, language controls are placed where the administrator expects them. I have worked

with TYPO3 4.1, which was released March 6, 2007.

3.2.1 Interface Translation

TYPO3 implements interface translation based on a custom “locallang-XML” (llXML)

format [31]. This allows for meta information and default (English) language text specifi-

cation in TYPO3 modules, as well as possibly included translations in published packages.

An extension named “llxmltranslate” is provided to assist translators with providing a

web interface to translate interface files.

3.2.2 Multilanguage Content Method

Two different multilanguage approaches are supported. Multilanguage content and mul-

tilanguage content integration differ in how the site structure is built. TYPO3 models

web sites as tree structures of web pages. It allows for translation of web sites by creating

different trees (essentially sub-sites) for the translated versions. This is easily done, and

also provides the extra feature of possibly having pages in one language that are not suit-

able in others. The problem for the end user is that it is not possible to switch languages

on the site pages and therefore the language selected on the site entry page is used.

3.2.3 Multilanguage Content Integration Method

Figure 3.4: Alternative page languages and layers of languages for a page component

The multilanguage content integration method allows administrators to have one page

tree with translations of page fields saved under the page as alternate values. This is sim-

ilar to the Joomla approach with an eagle eye view, but it is implemented differently.

23

3.2. TYPO3

Every web site tree can have web site languages specified. These have a name and a flag

associated with them. Once these languages are set up, the content created in the de-

fault language can be localized by adding alternative page languages below the previously

created pages. This means that there should be a default language in which pages are

added, and the translated contents are layered over the default values when displayed.

The default content is used when there is no translation to a specific language.

Among other overview possibilities, a convenient tree view is provided that shows the

translated content elements below each element created in the default language. The tree

view mirrors the internal implementation of TYPO3, showing that the language layers

reference content in the default language, and the alternative page languages define what

localization can be added for a page.

Language selectors (flags) can be shown in this mode on the web site so visitors can

see content available in different languages. Flags of unavailable content are dimmed. A

HTTP GET parameter is used to keep track of what language is selected, and TYPO3

overlays content (menus, pages) available in that language onto the default values on all

page views.

Figure 3.5: Database model of the multilanguage content integration method

On the database level, the sys language table contains the list of languages. The pages

table stores the page details, while the pages language overlay table stores the overlay

values for alternate page languages. This includes meta information like author name

and email, creation date and content versioning information. Because pages themselves

only store higher level information of displayed web pages, the content objects can be

24

3.3. PLONE

found in the tt content table, for every language. When pages are loaded, the content

of these tables are taken into account. Pages, overlays and content objects all support

versioning.

Finally, a “Localization Manager” extension was implemented in December 2006 to

better support translations’ overview possibilities as well as the import and export of

content for translation. This extension uses the Microsoft Excel XML spreadsheet format

for external translation support. Although this cannot be used directly in a computer

aided translation workflow, Orange Translations, LLC announced [32] that it will sponsor

further development of this component to integrate into CAT systems. I was unable to

find any publicly available results of these efforts.

3.2.4 Evaluation

The TYPO3 system was not built with end users in mind. To set up a site even with only

some simple customizations, administrators need to learn TypoScript and various objects

and properties to use. This means that it is mostly popular among solution providers.

While the multilanguage concepts and possibilities offered by TYPO3 are adequate for

most needs, the complexity of the user administration interface and its steep learning

curve does not make it a natural choice in most projects.

3.3 Plone

Plone [33] is a content management system built on the Zope platform and written in

Python. One of its immediate marketing points is that it is “built for multilingual content

management from the ground up”, and even has support for right to left written languages.

As a prime example, Plone was chosen to power the GNOME homepage [34] partly for

its strong internationalization support, so this was a good candidate to look at.

3.3.1 Interface Language Support

Plone has content language and interface language support. The administrator can set

the language of any content on the site and new content is created as language-neutral.

There is a predefined list of languages available in Plone from which the administrator

can choose.

The PlacelessTranslationService extension allows for translation of the interface of

Plone sites. Precreated translation packages are available in the PloneTranslations exten-

25

3.3. PLONE

sion (as Gettext Portable Object files).

Finally, the PloneLanguageTool extension can handle automatic language switching.

It allows for the setting of a list of languages actually used on the site (a subset of the list

of predefined languages available in Plone). A flag (or language name) list is generated for

visitors so they can choose from the translations of the current page in those languages,

if available.

Plone also supports different language negotiation schemes. The language can be

specified in the URL, in a cookie, or in the Accept-language browser setting when these

are available, and can be the site’s default setting otherwise.

These tools are still not enough for content translation, and only negotiation and user

interface elements are supported by these extensions.

3.3.2 LinguaPlone, XLIFFMarshall

LinguaPlone is what the Plone developers call the third generation of multilanguage

support in Plone. The previous generations’ solutions had different approaches, with the

second generation being similar to what Joomla and TYPO3 implements. The third gener-

ation LinguaPlone tool, however, acknowledges the limitations of the previous approaches

in document workflow, FTP and WebDAV import and export support and compatibility

with other existing Plone components.

Figure 3.6: LinguaPlone handles translations as first class objects having relations

For these reasons LinguaPlone implements a translation method where different con-

tent types can be language-enabled, but translation instances are stored as different first

class content objects (unlike TYPO3 and Joomla). This way every existing functionality

can work with translated content, and these objects have their own URLs. Language in-

26

3.4. DRUPAL

dependent fields can be shared between different translation instances. A content object

describing an event could have a date field shared, for example, in all translations.

LinguaPlone defines a canonical version for every content object and points trans-

lations back to that version. Language independent fields are loaded from this object

but are stored in every translation with the same value so every other functionality can

work with first class content objects. Property accessors of these shared fields guarantee

that changes are made to all instances at the same time. This also means that when

LinguaPlone is disabled, every content can still be worked with.

A two pane interface is provided to create content translations and to show the canon-

ical version in a second column while the user is typing in translations.

Sasha Vinčić gone even further and implemented XLIFF import and export support

in the XLIFFMarshall package so a computer aided translation workflow can also be

supported by this package.

3.3.3 Evaluation

Plone, with its mentioned components, allows the complete translation of web sites with

workflow support and provides the most comprehensive feature set for multilingual sites

among the content management systems I examined. It serves as a good example for

implementation in other systems, although some details, like how the accessors for shared

fields are allowed by the underlying object database, would not be readily available in

other systems.

3.4 Drupal

Drupal [35] is a free software package that allows an individual or a community of users

to easily publish, manage and organize a wide variety of content on a web site. Sites are

built with Drupal at IBM, NASA, NATO, UN, Yahoo, Sony, MTV, Canonical (ubun-

tulinux.com), etc. Drupal has a strong Content Management Framework (CMF) founda-

tion that enables it to meet different content management needs.

As of this writing, the 5.1 version of Drupal is the latest stable release, so I used that

version as a basis for this comparison. While interface language support is built into the

system, content language support is only possible with additional modules. There are two

similar module packages built for this task.

27

3.4. DRUPAL

3.4.1 Interface Language Support

Drupal has built-in interface language support through the locale module. This module

allows administrators to set up a list of languages to make the interface available in. The

system collects untranslated text on the fly, which allows for web based translation of the

interface. It is more convenient, however, to download a pre-translated package of Gettext

Portable Object files and import them into the web site’s database. Drupal delivers web

pages in different languages based on user settings with anonymous users accessing pages

in the site’s default language. The Gettext PO based translation method allows for the

reuse of several open source Gettext tools.

The interface language support, however, only spans to “factory built-in” strings. User

specified interface elements (menu items, the site slogan, and so on) are not possible to

translate.

3.4.2 Content Translation Support

Different objects (menus, categories, site blocks, web site properties, user specified content,

comments, etc.) are stored and handled differently in Drupal. Every type of object has

dedicated functionality and storage methods, as is the case with Joomla. This means that

the translation of a web site does not stop with translating content. As a consequence,

different objects might need distinct translation methods to match their purpose.

Because Drupal 5 has a good base of language settings, both well known module sets

build on this capability. Users can specify used languages on the locale module interface.

3.4.3 “Internationalization” Module Package

The Internationalization (i18n) module package, developed and maintained by Jose A.

Reyero, is the classic choice when building multilanguage sites with Drupal. As of this

writing, the current set includes the following most important modules:

i18n.module Allows for language settings of content, categories, menu items and site

properties. Handles automatic language selection for the user.

translation.module Stores relations of content and categories, so translations of the

same content can be represented.

i18nblocks.module Provides meta-blocks for multilanguage block availability. This en-

ables administrators to modify block properties all at once for different translations.

28

3.4. DRUPAL

i18nprofile.module Implements translation support for user profiles, so profile details

can be asked for in the user’s language.

The i18n module set by default takes a similar approach to Plone by storing objects in

different languages separately and forming relations between them. This way translations

of the same content can be shown to the user. Unfortunately, this results in a sometimes

unnecessarily cluttered interface. Many users are not interested in dealing with special

meta-blocks for block translation or adding translations of categories in separate instances

so they can be related as translations of each other. For this reason there are newer

replacement modules in the i18n module set that allow for lower level translation of some

objects (menu items, taxonomy terms and generic strings), only allowing “overlays” of

textual properties. Having both approaches implemented allows users to select what fits

their needs on a case by case basis.

Figure 3.7: Content instances are related to a translation set in i18n module

3.4.4 “Localizer” Module Package

Localizer was born from some of the frustrations mentioned above with the sometimes

overwhelmingly complex i18n module interface. It was largely built on the i18n module

code base (and also brought some concepts from the translate module built by Rob Ellis),

and is developed and maintained primarily by Roberto Gerola. Localizer includes the

following modules:

localizer.module Provides a general language setup interface, as well as language selec-

tion. A generic string translation mechanism is provided.

localizerblock.module Adds a language field to blocks (but no general placement helpers

like i18nblocks module’s meta-blocks).

29

3.4. DRUPAL

localizernode.module Implements language support on nodes, as well as translation

relationships between them, to supply source data for language selection.

Figure 3.8: Content instances are related to a parent content in localizer

There is also a set of modules built on the generic translation mechanism provided by

the localizer module. This mechanism is modeled very similarly to the Joomla approach.

Object names and object keys identify a record in the database (like “menu item” and

the item identifier). An object field specifies what field is translated from that record.

Menu, categories and site properties are translated using this approach. Node transla-

tion is similar to what the i18n module implements, although there are some additional

limitations due to content instances not related to a translation set but rather a parent

content item.

3.4.5 Evaluation

Drupal comes with two different module packages for multilanguage web sites. While both

of the approaches have a Plone-like content translation method (having different instances

for translations), other Drupal objects are handled with an approach closer to Joomla in

the localizer module package. Extension possibilities are offered by Drupal so that these

modules can plug into database query building and interface generation. Still Drupal 5

by its nature is built for single content language web sites primarily, and the solutions

used in the mentioned modules sometimes need to work around awkward limitations. It

is also apparent that because multilanguage handling is not a core value of the system,

third party contributed functionalities need to be taken care of in the language supporting

modules.

30

Chapter 4

A Comparison of the Examined

Solutions

The following section compares the features I will look at based on my findings of mul-

tilanguage web sites’ requirements, according to the definition of key areas I presented

in the second chapter. Later I will present the reasons why I choose Drupal for my

implementation.

4.1 Language Management and Detection

All examined systems (with the tested extensions) provide decent language management

features. A set of languages used on the web site is defined and a selection algorithm

is configured on the web interface so that the software can select a language to use to

show content and interface for the visitor. The following factors can be configured in all

systems:

1. Language specified in the URL. If a specific language is asked for in the URL

(either in the domain name or path), it always overrides any other preferences.

2. User language setting. Most systems allow the user to set a preferred language

in her profile, which is used on subsequent visits.

3. Language cookie remembered. For anonymous users, the previously viewed

language is remembered in a cookie and used to return to that language on the next

visit.

31

4.2. INTERFACE TRANSLATION

4. Browser language detection. Browsers send an HTTP Accept-language header

with information about language preferences (if the user sets this up in her browser).

If a language preferred by the user is found in the list of available languages on the

site, that one is selected.

5. Website default language. Every software examined supports the notion of a

site default language. If nothing else identifies the language, this provides a last

chance fallback.

Configuration of language detection involves selecting a number of the above factors

(and in some cases the order).

Joomla unfortunately suffers from a problem in this area. By allowing to change the

language with a URL parameter but then remembering that language outside of the URL,

there is no sign of the language variant displayed on the page in the web address itself.

This makes it impossible for search engines to index multilanguage content and users to

post links to specific language versions without a deeper knowledge of how Joomla works.

Plone, on the other hand, enforces language prefixes (and page hierarchy mappings) for

URLs, thus making the best practice the convenient default behavior. Drupal’s localizer

module is the only one to support different domain names for different languages out of

the box.

4.2 Interface Translation

The examined systems provide a default web site interface that includes dialogs with users,

navigation aids and more. Translation of these components is the first step in providing

a multilanguage web site.

Drupal provides the most control to site administrators, although only slightly more

than what Plone offers. Local language variants are easy to create and edit on the web

interface without knowledge of the underlying Gettext tool set. Import and export to

these formats is supported seamlessly. Joomla’s constants based approach is limited by

its lack of plural forms support, while TYPO3 requires custom tools and know-how to

handle the llXML based localization files.

32

4.3. CONTENT TRANSLATION

4.3 Content Translation

As discussed previously, every site manager defined text and media is considered content.

In this respect, there are three distinct approaches identified to multilanguage content:

1. Separate objects for translation. This method works by storing translated

versions of content objects as separate instances, relating them to each other. Plone

uses this method, as does Drupal with its modules for node based content storage.

Plone implements this based on the underlying object database, so access to common

properties of translations can be managed. A canonical content object is defined

for every such content group so a canonical version of shared properties can be

managed. Drupal’s modules have no support for shared properties so unfortunately

this problem is stepped over. The Drupal i18n module also uses this approach

for other content objects to allow different site structuring and setup for specific

languages.

2. Overlays on content objects. Some objects can have a defined set of their

properties “overlayed”, in effect replaced by translated values upon loading. Shared

properties are implemented by not allowing some properties to be overlayed and by

falling back on the original values when no overlayed value is available. TYPO3

uses this approach, and some modules in the Drupal i18n module set also make use

of such a solution.

3. Generic database level value overlays. A more generic implementation of

content object overlays involves allowing property overlays on the database level.

Database table names and key values specify a record, and a column name specifies

a value to be overlayed for an actual language. This approach as used by Joomla

and in part by Drupal’s localizer module, is generic enough to allow for any kind of

translation on the relational database level.

By looking at the history of Plone multilanguage support [36], we can see that devel-

opers around Plone tried almost all of the above approaches and ended up with separate

content objects in their third major iteration. The most compelling reason for this is

because there were so many tools for content objects implemented already. Version and

change tracking, permission handling, workflow support, import and export functionality,

FTP and WebDAV interface and others. By storing every relevant content property in

every translation, even if LinguaPlone is turned off, the content objects are still present

and usable by the system.

33

4.4. PERMISSIONS AND WORKFLOW

The overlay approaches are based on the assumption that translated content is really

just text replacement. When the above mentioned feature set is required, reusing existing

functionality built into the system should take precedence and separate object instances

should be used. It should be noted that not every content type requires workflow support

or language dependent permissions. A simple poll published in all languages on a web

site and translated with an overlay method would collect the votes for all users in the

same data store, as well as prevent users from submitting multiple votes in different

language interfaces of the site. Here, the reuse of existing poll related functionality might

take precedence. It is important to consider these arguments in the actual case when

implementing a multilanguage solution.

4.4 Permissions and Workflow

While it is possible to translate content in every system I examined, permissions related

to translations and complex workflow support differ.

Joomla offers a fixed list of user groups from which translators need to be at least in

the “backend administrator” group to access the translation interface. Unfortunately, this

gives them many other rights on the administrative screens. JoomFish maintains a hash

value of the original text of content being translated, so a basic workflow is supported to

identify stale translations. There is no versioning support for translations (neither for the

original content itself). A CAT based workflow is not supported.

TYPO3 allows limiting users to specific languages and specific editing interfaces so

translators can only work on their assigned languages with their assigned tools. Version

tracking for content and translation overlays is supported so the system identifies and

warns translators when specific details of base pages or page components change. The

original and new version are shown to the translator. Although CAT supporting tools

are not yet implemented, there is support for export and import of Microsoft Excel XML

spreadsheets, which allow for external translation.

Plone comes with a mature workflow engine that controls the states of the document

through a publishing workflow that includes states and transitions. States could include

created (initial state), pending (waiting for review), published, and so on. Distinct per-

missions are also maintained for each state so different user group members can only make

modifications they are entitled to make. Additionally, scripts can be run on transitions

to inform translators and editors of changes. Unfortunately, there is no built-in work-

flow tailored for translations, but workflows can be configured on the web administration

34

4.4. PERMISSIONS AND WORKFLOW

screen. There is an XLIFFMarshall extension available to plug the onsite workflow to a

CAT based translation system.

Drupal supports user role based permissions out of the box, and it also comes with a

per-content permission backend for which extensions provide the user interface. Although

no notion of workflow is supported in the system by default, the i18n module includes

a simple publishing workflow where authors and translators can attach states to their

documents. Transitions with scripts (as in Plone) are not supported, and the localizer

module has no similar feature. There is a workflow and an actions module available,

though, to implement complex workflows with transitions and scripts (here called actions).

There is no sample workflow provided for translations and neither of the modules examined

provide actions for these workflow support modules. I was unable to find a CAT based

workflow support tool for Drupal.

35

4.5. COMPARISON TABLES
4
.5

C
o
m

p
a
ri

so
n

ta
b
le

s F
ea

tu
re

J
o
om

la
T

Y
P

O
3

P
lo

n
e

D
ru

p
al

w
it
h

i1
8n

D
ru

p
al

w
it
h

lo
ca

li
ze

r

W
eb

b
as

ed
la

n
gu

ag
e

m
an

ag
em

en
t

Y
Y

Y
Y

Y

L
an

gu
ag

e
in

d
om

ai
n

n
am

e
N

N
N

N
Y

L
an

gu
ag

e
as

H
T

T
P

G
E

T
/P

O
S
T

p
ar

am
et

er
Y

Y
Y

Y
Y

L
an

gu
ag

e
p
er

m
an

en
t

in
U

R
L

p
at

h
N

Y
Y

Y
Y

L
an

gu
ag

e
fo

r
an

on
y
m

ou
s

u
se

r
C

o
ok

ie
N

C
o
ok

ie
P

H
P

se
ss

io
n

P
H

P
se

ss
io

n

L
an

gu
ag

e
se

tt
in

g
fo

r
si

te
u
se

rs
N

N
Y

Y
Y

H
T

T
P

A
cc

ep
t-

la
n
gu

ag
e

b
as

ed
d
et

ec
ti

on
Y

N
Y

Y
Y

T
ab

le
4.

1:
L
an

gu
ag

e
se

le
ct

io
n

co
m

p
ar

is
on

F
ea

tu
re

J
o
om

la
T

Y
P

O
3

P
lo

n
e

D
ru

p
al

T
ra

n
sl

at
ab

le
in

te
rf

ac
e

Y
Y

Y
Y

T
ec

h
n
ol

og
y

u
se

d
C

on
st

an
ts

ll
X

M
L

G
et

te
x
t

G
et

te
x
t

T
ra

n
sl

at
io

n
m

an
ag

em
en

t
Im

p
or

t
b
y

u
p
lo

ad
,

st
or

ed
in

th
e

fi
le

sy
st

em
In

p
ac

ka
ge

In
p
ac

ka
ge

Im
p
or

t
to

d
at

ab
as

e
b
y

u
p
lo

ad
an

d
w

eb
b
as

ed
ed

it
in

g
R

eo
rd

er
in

g
of

va
ri

ab
le

st
ri

n
gs

Y
N

/A
Y

Y

D
iff

er
en

t
p
lu

ra
l
fo

rm
s

N
N

/A
Y

Y

L
o
ca

le
(e

g.
d
at

e
fo

rm
at

)
su

p
p
or

t
N

W
it

h
ex

te
n
si

on
Y

N

T
ab

le
4.

2:
In

te
rf

ac
e

tr
an

sl
at

io
n

an
d

lo
ca

li
za

ti
on

co
m

p
ar

is
on

36

4.5. COMPARISON TABLES

F
ea

tu
re

J
o
om

la
T

Y
P

O
3

P
lo

n
e

D
ru

p
al

w
it
h

i1
8n

D
ru

p
al

w
it
h

lo
ca

li
ze

r

F
u
n
ct

io
n
al

it
y

av
ai

la
b
il
it
y

E
x
te

n
si

on
B

u
il
t

in
E

x
te

n
si

on
E

x
te

n
si

on
E

x
te

n
si

on

T
ra

n
sl

at
io

n
m

et
h
o
d

D
at

ab
as

e
ov

er
la

y
O

b
je

ct
ov

er
la

y
A

ss
o
ci

at
ed

ob
je

ct
s

A
ss

o
ci

at
ed

ob
je

ct
s

A
ss

o
ci

at
ed

ob
je

ct
s

U
se

r
in

te
rf

ac
e

G
en

er
ic

,
te

x
t

on
ly

S
im

il
ar

to
co

n
te

n
t

ed
it
in

g
C

on
te

n
t

ed
it
in

g
C

on
te

n
t

ed
it
in

g
C

on
te

n
t

ed
it
in

g

S
h
ar

ed
p
ro

p
er

ti
es

N
ot

ov
er

la
ye

d
,

li
m

it
ed

b
y

co
n
fi
gu

ra
ti
on

N
ot

ov
er

la
ye

d
,

li
m

it
ed

b
y

d
at

ab
as

e

W
it

h
ac

ce
ss

or
s,

in
ev

er
y

ob
je

ct
N

N

T
ra

n
sl

at
io

n
ve

rs
io

n
in

g
su

p
p
or

t
N

Y
Y

Y
Y

P
er

m
is

si
on

s
fo

r
tr

an
sl

at
or

s
O

n
ly

ad
m

in
is

tr
at

or
ca

n
tr

an
sl

at
e

L
an

gu
ag

e
an

d
in

te
rf

ac
e

li
m

it
ed

F
le

x
ib

le
,
st

at
e

se
n
si

ti
ve

R
ol

e
or

co
n
te

n
t

b
as

ed
R

ol
e

or
co

n
te

n
t

b
as

ed

W
or

k
fl
ow

su
p
p
or

t
V
er

y
li
m

it
ed

L
im

it
ed

M
at

u
re

S
im

p
le

(o
r

ad
d
on

)
N

(o
r

ad
d
on

)

C
A

T
w

or
k
fl
ow

su
p
p
or

t
N

P
ar

ti
al

Y
N

N

T
ab

le
4.

3:
C

on
te

n
t

tr
an

sl
at

io
n

co
m

p
ar

is
on

37

4.6. CHOOSING A SYSTEM FOR MY IMPLEMENTATION

4.6 Choosing a System for My Implementation

The findings outlined in this chapter suggest that the language and workflow requirements

examined at the beginning of my thesis can be fulfilled with either a Drupal or a Plone

based implementation, with Plone having the strongest multilanguage support of all the

systems I have examined. At this point in time, I would recommend Plone for people

evaluating a content management system on the grounds of multilanguage features. A

typical project, however, involves a lot more factors to take into account before deciding

on a backend.

As my thesis assignment instructed me to implement multilanguage features with an

open source system, I chose Drupal because it allowed me to plan a new architecture

based on my findings and provide an implementation. It also enabled me to contribute

my work to the open source community, in part directly to the Drupal codebase and in

part as extensions to the core system. Participating in the community also allowed me to

get critiqued and corrected from time to time, ensuring that my work is useful for actual

Drupal implementors.

38

Chapter 5

Defining Requirements for a Drupal

Based Solution

5.1 Drupal Architecture

The Drupal 5 framework operates with a web server supporting PHP and a database,

with MySQL and PostgreSQL being the two most supported databases. At the core of

Drupal is the API provided to the upper layers: database abstraction, visitor session

handling, event logging, multilevel caching, etc. Initializers decide on the amount of code

loaded from the full framework, depending on what is required to serve the page request,

implementing a sophisticated “bootstrap system”.

The page’s interface language is selected in the bootstrap process, because the page

contents are different for different languages, it is impossible to serve a cached version

without knowing the language.

If the bootstrap system identifies that the request cannot be served from the cache,

without loading core functionality, the needed modules are loaded and the processing is

handed over to the registered page handler for the identified request path. That page

handler works with the database, collecting the data required to build up the page and

then handing it over to the theme layer to generate a response suitable for the request.

The complete system interface is capable of being translated, but the translation

subsystem is only active if the so called “locale” module is turned on. This puts the core

system at a comfortable distance from translations, so if such functionality is not required,

it does not hurt runtime performance.

Drupal 5 comes with an alternate bootstrap mode used for installation when a backend

database is not present, so the system needs to be able to work under tight resource limits.

39

5.1. DRUPAL ARCHITECTURE

Figure 5.1: Drupal architecture

The task of the installer is to help the user set up the database and possibly any other

details related to the actual install profile used.

Drupal allows customization and extension of it’s functionality with so called “hooks”.

Hooks allow developers to provide code to run when certain events happen, allowing

modules to subscribe to the listener’s list of particular events. The form altering hook

mechanism allows developers to change or extend existing forms in the system. For

example, it can be used to add language selector elements to content object editing forms.

Drupal serves pages with a callback registry mechanism. Modules can register their

callbacks for certain path components of web addresses and when a HTTP request comes

in, Drupal selects the callback to invoke based on this registry.

The view (display) layer of Drupal is separated from modules, which allows for different

template languages including PHP and domain specific languages like Smarty. Modules

work with theme callbacks to generate output for the client.

A deep overview of the Drupal architecture is available in the Pro Drupal Development

book [37], published by Apress.

40

5.2. PLANNED LANGUAGE ARCHITECTURE

5.2 Planned Language Architecture

Figure 5.2: Planned Drupal language architecture

I started defining requirements and implementing some solutions when Drupal 5 was

close to being released. Because Drupal only had a notion of interface language and

this concept was only used in runtime, the installer and the Drupal runtime needed to

be language aware to have better language support, usable interfaces for content, and

user defined interface translation. The white areas on the figure show where I worked on

planning and developing solutions for Drupal.

5.3 Source Code Based Interface Translation

As explained previously, Drupal has Gettext Portable Object based interface translation

support. The translation templates ship with an extractor script that can be used to

generate interface string templates for Drupal itself and contributed modules. External

programs can be used for translation, and finally the resulting PO files can be imported

to Drupal directly. The translations are stored in the database used by the system, which

allows for quick access when required. Any number of languages can be set up.

41

5.3. SOURCE CODE BASED INTERFACE TRANSLATION

5.3.1 Installer Localization Support

Drupal 5.0 was the first release to include a web based installer. Previously new Drupal site

setups required the editing of configuration files and were not ready for foreign interface

languages from the start. Users needed to enable interface translation functionality and

import interface translations after setting up Drupal. With Drupal 5.0 a limited Drupal

runtime is loaded into memory to execute the install process with a given installation

profile (which can enable functionality and do database changes as required). Initially

the installer was not multilanguage ready so a natural requirement was to make it capable

of guiding the user through the install process in any selected language. My requirements

list for this feature were the following:

1. The existing localization functionality of Drupal should be reused to allow for the

same API to be used for the installer interface.

2. No database should be required, and an in-memory solution should be developed to

work before the database gets set up.

3. Translators should be able to translate the installer interface with their well known

tools, and translation packages should ship with the translation of the installer.

4. My solution should not hurt runtime performance of Drupal, once installed.

5.3.2 More Efficient Translation Packaging and Importing

Up to Drupal 5.0, translations of the Drupal core were shipped as one monolithic Gettext

Portable Object file in the hopes that the uploading and importing of interface translations

were easy for the user this way. Unfortunately, shared web hosts have resource limits on

running scripts and the importing of complete translations (which can be up to half a

megabyte in size) often resulted in terminated and incomplete translation imports. The

second drawback of the monolithic translation files is that the text for unused functionality

clutters up the database and slows down the system.

For these reasons, a more efficient packaging format and import mechanism was de-

signed. Requirements of this component were as follows:

1. Translations of different modules should be separated, easing the work for translators

as well as optimizing database usage.

2. Users should get localization functionality turned on if using a localized installer.

42

5.3. SOURCE CODE BASED INTERFACE TRANSLATION

Figure 5.3: New functionality required in Drupal Installer

3. The localization backend should import translations for the used functionality at

install time.

4. When the administrator changes the set of used modules on the site, new translations

should automatically get imported and wiped as required.

5. Possible (but exactly not known) resource constraints of hosts should be taken into

account.

The two tasks explained fit into the Drupal installation process by allowing language

selection for the previously selected install profile, enabling interface translation function-

ality, and importing translations prepared by Drupal translation teams. This way the

system is prepared to welcome the user in a language other than English from the start.

5.3.3 Local Functionality with Custom Install Profiles

While planning to add language functionality to the installer component, it became evi-

dent that some groups require local functionality on top of the translated interface. There

is common functionality that is relevant for a local group only. An example of this was

the Hungarian community, where hobbyists often set up Drupal on a shared host. Well

known shared hosts have well known special setup requirements, so I decided to add sup-

porting functionality for some of these hosts in the Hungarian installation profile. My

skeleton was implemented by István Palócz and after refining the source code, I added

the implementation to our installation profile [38, 39].

43

5.4. LANGUAGE MANAGEMENT FUNCTIONALITY

5.3.4 Fixing Logic Problems and Adding Smaller Features

While looking deeply into how Drupal does interface translation, a few small issues arose

that required solutions. While these do not directly relate to my thesis, solutions for these

issues were required to provide a complete multilanguage solution for Drupal users.

1. Language independent logging was a problem in the system. Log messages were

always saved in the language the current page is displayed in, so the logging system

was in need of some refactoring to log messages in English and display them in the

current language used to administer the web site.

2. The menu building system was refactored as part of the Drupal 6 release and required

a different menu item translation solution similar to what was planned for the logging

subsystem.

5.4 Language Management Functionality

While examining the existing extensions for Drupal and analyzing the requirements posted

on my request [19], it became apparent that low level, built-in language management

support in is needed Drupal. The limited locale functionality only allowed for a set of

languages to be specified. Directionality or native names of these languages were not

known and language selection and detection implementation was not included in Drupal.

The goal of the first layer of language support improvements for Drupal was to ele-

vate language awareness among Drupal developers by including better built-in language

support. Requirements of the language management improvements are as follows:

1. Decouple language management from the locale functionality, given that language

related configuration is not limited to the interface language anymore.

2. Maintain the writing direction, native names and weights of languages to be used

when displaying a language or a list of languages.

3. Add web address (domain and path) based language selection, with freely config-

urable domain names and path prefixes. Keep in mind that IRIs should be usable

here.

4. Implement a browser setting (HTTP Accept-language) based language detection to

select a default language for the user when first visiting a page without explicitly

asking for a language.

44

5.5. USER SPECIFIED CONTENT TRANSLATION

5. Provide a configuration mechanism for the language selection algorithm used and

how it takes domains and paths into account.

6. Implement an upgrade path for earlier Drupal versions so previously set language

properties are kept in the new version.

5.5 User Specified Content Translation

5.5.1 Running Multiple Sites on the Same Code Base

Drupal includes a so called “multisite” feature that allows the system to run multiple

web sites on the same code base, possibly sharing parts of the database, for example

user accounts. This allows for the easy set up of different web sites for different lan-

guages and could be used to provide a language selector entrance page for visitors similar

to how TYPO3 implements its “multilanguage content” method. However this type of

multilanguage setup is very limited, so as I declared earlier, I will specify solutions for a

“multilanguage content integration” method.

5.5.2 Types of User Defined Content in Drupal

Once Drupal knows what possible languages to use on a site and can select the language or

languages used on a page, it is important to identify the targeted objects for multilingual

presentation. The list of different objects that need multilingual content support are as

follows:

1. A Drupal site has various basic settings like the site name, slogan and logo image.

These settings are stored as so called variables by Drupal.

2. User specified content is stored in objects called nodes. These nodes have some

common base properties like the author of the content and whether it is published

or not. Nodes can have any number of fields (date, location, excerpt, attachments,

and so on) provided by contributed and built-in modules.

3. There can be different types of nodes, called content types. These content types

specify some basic properties of what fields a node provides and how these are called.

4. Nodes can be categorized in a taxonomy system. Categories evolve around vocab-

ularies, having terms to describe content. An example of a vocabulary for photos

is Colors, containing terms like red, green, yellow and brown.

45

5.5. USER SPECIFIED CONTENT TRANSLATION

5. Site navigation can be built with menus. Drupal has built-in menu items provided

by the system, and the administrators can add arbitrary menu items.

6. The layout of a web site contains content and navigation, as well as blocks, pointing

the user to more content, showing advertisements, and so on.

7. Users can have their own user profiles with administrator defined fields like Real

name, Email address, Skype name and others.

8. Drupal has an included new aggregator with RSS and Atom support that has agg-

regator categories and feeds set up on the web site.

These different types of objects need different levels of language support. Content type

and user profile field names are basic string properties of objects, and therefore separate

object instances are not required to translate them. Nodes, on the other hand, usually

require separate instances to support workflows and adequate permissions for each content

object. Taxonomies and menus are borderline, sometimes requiring different instances and

sometimes forbidding different instances depending on the actual requirements imposed

by the built web site. To provide a consistent translation infrastructure, my plan was to

implement a translation system based on separate instances for nodes, while implementing

a so called “dynamic text translation” mechanism for simpler objects.

5.5.3 Content Language

The first task in implementing content translation is to add support for content items to

relate to the different languages set up on the web site. This feature already benefits those

types of web sites in which multiple content items are posted in different languages, but

these are not related. From single author blogs to complex community news sites, this

feature is useful even without translation support. Requirements for content language

support include the following:

1. If language functionality is not turned on, submitted content should be flagged as

“language independent”, therefore allowing site editors to later assign languages to

content.

2. If the language functionality is turned on, content types selected to have multilan-

guage support should provide an interface to associate a language with a content

object.

46

5.5. USER SPECIFIED CONTENT TRANSLATION

5.5.4 Content Translation

To make use of many of the features already available for nodes like different workflows,

permissions, and revision tracking, it is vital to have node instances as translations of

other node instances, as previously discussed. This means that a node translation system

similar to Plone’s should be implemented. Requirements for this feature include the

following:

1. Only content types with language functionality enabled should have translation

support, and only if an actual node has a language associated.

2. Unlike previous implementations of the i18n and localizer module suites, revisions

of nodes should form a base of translation associations so translators can be in-

formed of outdated translations and the status of different language versions can be

automatically tracked.

3. The system should allow for sharing fields between different node instances.

This allows different language versions to have their own web addresses, and it supports

import and export features and news feeds that are generated by the system.

5.5.5 Dynamic Text Translation

Replacing certain properties of an object is a viable way to translate it to a different

language when its translations are not required to have revision support, multiple authors

or permissions. User profile forms defined by the administrator have such properties, as

do site settings and other simple objects defined on the web site.

To translate such objects, the system first needs to know about the properties it will

translate so it can distinguish between the ones it needs to store and look up translations

for and the ones it needs to leave unmodified. This requires meta information about these

objects defined in Drupal. Implementing the XML descriptor approach, as utilized by

Joomla, does not meet our needs because a list of properties is not enough to present a

user interface, as shown on the Joomla screenshots. Information about the user interface

is also required to show the user who will edit the translations.

It is important to investigate ways to integrate translations of different texts in Drupal.

Content translation and interface translation already have different approaches. Dynamic

text translation of simpler objects should not provide a third confusing way, but rather

integrate to the interface translation framework.

The tasks for this feature are the following:

47

5.6. TRANSLATION WORKFLOW

1. Enable Drupal modules to provide meta information about objects defined in the

module and their properties to be translated.

2. Allow the import and export of translations of objects for interaction with external

services or agencies.

3. Provide context sensitive form elements and help text dependent on the type of

value being edited.

5.6 Translation Workflow

Drupal includes very simple workflow features by default. Content objects can have flags

like: “published”, “displayed on the front page”, “with change management support,”

etc. These flags have default values for every content type and are editable only by site

administrators or content editors. This means that if a content item is created by someone

not privileged to modify these flags, the so-called “default workflow” will be started with

the content object. Later on, editors can modify flags on the content object any way they

like.

Most complex web projects require tracking of documents’ status, as well as running

several actions when documents change status. For this reason, Drupal has a workflow

and an actions module, which jointly allow web site implementors to define possible states

and transitions and assign actions to the transitions.

For example, a document can be tracked through a “draft”, “editing”, “accepted”,

“to translation” and “published” cycle. Actions can be set to inform translators when a

document reaches the “to translation” state, or automatically set the “published” flag of

a content object when the “published” state is reached.

5.6.1 Limiting Permissions Based on Workflow

Drupal provides role-based permissions by default, that allow users to possibly have an

editorial role to edit all properties of all content objects. Although support for content

level permissions is built into the system, no user interface is provided for configuring it

by default. Contributed functionality can hook into the system to provide a means to set

content level permissions because different use cases require specific user interfaces, rules

and automation to set up content level permissions.

Permission levels should be restricted to support a translation workflow. While a

document is in the “draft” stage, both the content author and editor should be able to

48

5.6. TRANSLATION WORKFLOW

modify it. After a document is “accepted” for publication and is sent out “to translation”,

modification by the author should not be allowed. This is a simple example of a translation

workflow, but actual cases might involve different requirements, so a general solution was

planned.

I decided to tie user roles to workflow states and provide permission settings based

on these three dimensions. This way when a node moves from “draft” to “accepted”, the

editing privileges can be revoked from the author in the use case above. At the same time,

translators should have privileges to view content objects in the “to translation” stage,

even if those are not yet published to the web site. The planned system should be general

enough to support any content permission changes throughout workflows configured on a

convenient web interface.

5.6.2 CAT Based Workflows

Figure 5.4: Maximalist XLIFF transformation method planned for Drupal

As described earlier, most professional translators use their dedicated tools supporting

storage and reuse of previous translations, so an interface with these tools is a requirement

if large volumes of to-be-translated content are handled by the system, or if in-house

translation know-how is not present.

A Computer Aided Translation workflow support tool was not present for Drupal at

the time I reviewed the system for my thesis, so I decided to implement interfaces to

import and export in the XLIFF format as a contributed module. Requirements for this

functionality include those listed below:

1. Work with the content types shipped with Drupal by default.

2. Enable administrators to limit access to the functionality based on permissions and

workflow states.

49

5.6. TRANSLATION WORKFLOW

3. Provide an API to reuse the XLIFF import and export functionality by possible

workflow actions (eg. sending a mail with an XLIFF document to the translator

when a content object gets ready for translation).

50

Chapter 6

Implementing a Solution with

Drupal

6.1 Source Code Based Interface Translation

6.1.1 Installer Localization Support

Drupal’s interface translation API is one of the most invoked set of functions, so extending

the internals of the implementation would hurt runtime performance of Drupal sites, which

is not acceptable. So the first requirement of this functionality was slightly modified: the

interfaces provided by the translation API, but not the API itself should be reused. The

new install-time interface translation functionality works with a memory backend instead

of the database. Standard locations were defined for the install profiles’ translation files,

so all translations found by the installer for a specific profile are offered to the user. Once a

language is selected, the relevant Gettext PO file is loaded into memory and these strings

are never imported to the database. The work I have done to implement this functionality

includes the following:

1. Add language selection screen to the Drupal installer to allow the administrator to

select a language from the ones available for the current profile.

2. Allow for in-memory storage of translation strings while maintaining the language

used throughout multiple HTTP requests required to complete the installation.

3. Modify the translation template extractor to generate a separate installer template,

therefore recognizing the text used in install time.

51

6.1. SOURCE CODE BASED INTERFACE TRANSLATION

4. Test the Hungarian translation and fix some problems I encountered in the installer

itself.

Drupal 5.0 shipped with my improvements and the translation packaging scripts were

modified by Derek Wright to include the installer translations in downloadable packages

separately.

6.1.2 More Efficient Translation Packaging and Importing

Requirements specification was late for this feature to get into Drupal 5.0, so I started

development as part of the new “autolocale” contributed module and “localized” install

profile [40]. The “localized” profile adds autolocale module to the enabled modules list, so

that when the installation process is done the initial translation import can be performed.

Translation files are searched in standard places under module directories. Jakub Suchy

implemented the functionality of monitoring module changes, so when a new module is

enabled, translations for that module are imported.

Figure 6.1: The structure of the Hungarian translation package

52

6.2. LANGUAGE MANAGEMENT FUNCTIONALITY

To have separate translation files in standard locations, I have developed new pack-

aging scripts that generate a package structure similar to Drupal 5’s own directory tree.

Once a translation package is uncompressed, the translation files, autolocale module and

localized profile files fall into place where Drupal expects them. I have run a beta test

on my new packages with the Hungarian Drupal community and the results showed that

most of the requirements were met.

Unfortunately, two requirements were not possible to meet in Drupal 5.x for architec-

tural reasons. Due to the Gettext based translation system, Drupal only knows about

string pairs, and there is no exact information maintained about where those strings are

actually used in the source code. Therefore it is not possible to remove unused strings

when a module is turned off. It is unlikely that this will get fixed in Drupal 6.

The other limitation we faced was in the handling of the installer process and form

submissions. We could only meet the requirement of performing translation imports under

limited resources by dividing the import process to multiple HTTP requests. Unfortu-

nately, Drupal 5 does not offer a way to perform multiple “batched” HTTP requests in

the installer process or on form submissions.

I worked closely with Yves Chedemois to solve this issue in Drupal 6, and as a result,

Drupal 6 includes a batch API that allows progressive operations to be executed in mul-

tiple HTTP requests. I also submitted a polished version of the install profile and the

developed import functionality, and got it included in Drupal 6.

The work I have done to implement this functionality includes the following:

1. Implement a new autolocale module and a localizer install profile for Drupal 5.

Adapt it to the batch API and update the functionality to be included in Drupal 6.

2. Define a new packaging format for translations and implement a packaging tool to

generate packages in this format.

3. Conduct initial testing on the Hungarian translation and public testing within the

community.

6.2 Language Management Functionality

I collaborated with Jose A. Reyero to implement this functionality. A new language list

handler was developed to support the following properties of all languages:

• An enabled/disabled flag to set when a language is active on a web site.

53

6.2. LANGUAGE MANAGEMENT FUNCTIONALITY

• An RFC 4646 language code to replace the deprecated ISO 639 code used earlier.

• A language name in English, used for translation to display names in the appropriate

interface language.

• A name in the native language that can be used to guide users to select their

language, even if not knowledgeable in the current language displayed.

• Direction information with left-to-right and right-to-left support.

• Weight information that can be used to display lists of languages.

• Custom path prefix support (eg. http://example.com/deutsch/ for German and

http://example.com/magyar/ Hungarian).

• Arbitrary custom domain support (eg. http://example.de/ and http://example.

hu/ for the corresponding languages).

A new language management screen was implemented to provide an overview that

allows toggling of the most important properties and guides the administrator to detailed

editing screens for each language. I modeled this user interface after the module listing

and block editing interfaces of Drupal so that the concepts applied here should be familiar

to existing Drupal users.

Figure 6.2: Language management interface in Drupal 6

The required process of language selection differs from web site to web site, so a sensible

default cannot be specified. To ease method selection, we implemented combinations of

path and domain based lookups with fallbacks, as users specified in their use cases in my

research [19]. Our implementation of browser language detection and different negotiation

methods got accepted into Drupal 6.

54

6.3. USER SPECIFIED CONTENT TRANSLATION

Figure 6.3: Language negotiation options in Drupal 6

6.3 User Specified Content Translation

As outlined in the requirements, two different translation methods were implemented

for content translation: one for nodes based on language properties and translation as-

sociation and the other for textual properties of simpler objects based solely on their

textual values. I worked with Jose A. Reyero to implement solutions based on my list of

requirements.

6.3.1 Content Language

A straightforward solution to assign language information to content objects will be in-

troduced in Drupal 6. The system allows for language-less (so called “language neutral”)

nodes as well as nodes associated with exactly one language based on their content.

Until the multilanguage subsystem is turned on, content objects are saved as being

language neutral. The multilanguage subsystem, however, allows for enabling language

support on content types, thus providing a user with a selection widget to specify the

language the content is being saved in.

It is possible to have content types without associated language controls, in which case

new nodes created in this type are saved with the default language. For example, this

allows for web site forums to always have content saved in their default language.

The implementation also allows extension functionality to hook in and alter the be-

havior of the language selection widget. This is important for the content translation

implementation, but also opens the door for other types of automated language associa-

tion tools to help users.

55

6.3. USER SPECIFIED CONTENT TRANSLATION

6.3.2 Content Translation

Although there was discussion about a generic node object relation system in the commu-

nity while I was preparing the implemention of content translation, it did not materialize

into a system that I would be able to build on. So I opted for a straightforward relation

model instead.

Translations of the same content are organized into so called “translation sets,” which

have a “source node”. The source node serves as a base to compare translations to so

that the status of different language versions can be compared to the initial content.

Translation sets are always created the first time a node gets a translation and make

the original content object the source node. This design allows the system to track the

revision identifiers of the set member nodes as updates are made to their contents. It

also enables extensions that give users finer controls around the edits made to particular

content. This way the revision relations can be accurately maintained.

Figure 6.4: Translation sets with revision tracking

The source node concept also allows for the possibility of sharing particular fields

between the original node and the translation objects. Because the sharing feature is not

targeted at Drupal 6, the design leaves this possibility open for contributed modules to

build on. Source nodes fulfill the role of the analogous canonical content object concept

from Plone, and thus are able to provide default values when properties are not provided

in translations. Since Drupal 6 does not offer the possibility of stand alone properties

and a complex extension, (the Content Construction Kit [41]) is required to build content

types with stand alone fields that allow for the possibility of sharing fields, my design

cannot go that far in itself.

6.3.3 Dynamic Text Translation

Close examination of the existing localization (locale) module in Drupal showed that it

would be possible to reuse the functionality provided by that module for object translation.

56

6.3. USER SPECIFIED CONTENT TRANSLATION

The locale module stores source text and corresponding translations in different languages.

This system has some assumptions about the text it is working with:

1. The localization functionality is built to translate from English to any other lan-

guage. Source text is always assumed to be in English.

2. The locale module itself treats every translated string as standalone text that is not

related to other strings or places where it was defined. Although the web address

of the page where the string first occurred or the source file name and line number

are collected, these only serve as informational helpers for the translator.

3. The module provides generic text fields as a translation interface for all texts trans-

lated through its web interface. This did not fit the requirements.

4. The locale module either works with previously imported translations or collects

new untranslated source strings to translate as the user browse web pages generated

by the system.

Although the locale module has good import and export functionality and a useful

storage backend for translations, the above limitations needed to be lifted to be able to

use it as a backend and frontend for translation.

To support different translation domains on top of the built-in interface translation fea-

ture, I decided to extend the module to allow for more domains defined by modules. These

domains allow the implementation to distinguish between the built-in interface transla-

tion and translations of content type properties, user profile field definitions, aggregator

categories and feeds, and more; each of them being in different domains. For usability

reasons and to avoid ambiguity with language dependent internet domain names, this

feature got the text groups name and was accepted into Drupal 6.

To reflect the structure of the objects in translation the modules needed to be able to

provide meta information about their objects. To do this I introduced the new locale hook,

which can be invoked in any module that defines text groups in order to get information

about the defined text groups as well as the objects to be translated in those groups.

Objects have their identifier property provided as well as the names of properties to

translate. This way the locale module knows what source text it should look up for

translations and can store the translations when asked to.

Nearly all the objects involved in dynamic text translation are defined by the admin-

istrator or site editor before being used so modules can ask the locale module to save

the source text of properties. The only exception is site settings, which has defaults in

57

6.4. TRANSLATION WORKFLOW

the system if they are not manually defined. I proposed a system to designate a central

place to provide site settings defaults, which is still being discussed within the developer

community as of this writing.

I implemented the above object translation scheme for the aggregator and user profile

modules and presented them to the community for inclusion [42].

Storage of the structure of objects presented for localization is solved by reusing the

location field provided by the existing locale module, but which previously was only used

for informational purposes. My code stores an “object property path” there that contains

the object type, identifier and the property to translate. Source and translation strings

can store their values just as the locale module does.

Although this solution requires locations to be strictly maintained, it makes reusing the

import and export functionality seamless, which I provided and had included in Drupal

6. Having Gettext based interfacing for dynamic text translation allows users to tie into

existing translation tools and provide their text to translation agencies. Because most of

the text to be translated consists of a few words, or at most two to three sentences, an

XLIFF based interface would be overkill.

The text groups design and the object meta information definitions allow the locale

module to generate forms with information about the exact property being edited. Al-

though the designed system has no knowledge about the required form controls for certain

properties, the forms contain identifiers so Drupal’s built-in capability to alter forms pre-

sented to users allows any module to replace the generic text editing fields provided by

the locale module by default.

6.4 Translation Workflow

Figure 6.5: Sample translation workflow implemented

Using the workflow module, I have implemented the above workflow containing the

58

6.4. TRANSLATION WORKFLOW

states outlined in the requirements section. A sample document has an author, starting off

with the content in the “draft” stage. Once she feels the content is ready for editing, she

can move the document to the “editing” stage where editors can look at the content and

either bounce it back to the author or advance it to “accepted” or “published” directly.

The “accepted” state is needed if scheduling requirements are in place for the docu-

ment. A press release or an article for a magazine will not get published until a certain

set date. Another example presented earlier in my thesis is the case of legal documents

required to be published at the same time in multiple languages. Until the original doc-

ument gets into the “to translation” state and all the translations get to an “accepted”

state, publication of the documents should not be possible.

While it is possible to implement the above graph with the workflow module, function-

ality provided by the actions module is required to send emails to editors and translators

when documents enter a stage relevant for them. Automatically publishing a document

when it gets to the “published” state is also implemented within the actions module. I still

needed to look into implementing solutions for fine grained permissions and translation

specific functionality, as described in the following sections.

6.4.1 Limiting Permissions Based on Workflow

As outlined in the requirements, different workflow states may require different permis-

sions for the user roles working with documents. Therefore a three dimensional permission

configuration tool was implemented.

While searching for prior work, I found the workflow access module developed by Earl

Miles and discontinued a year ago. Although Drupal has changed a lot since that time, it

was possible to update the module as well as fix some issues. I handed over the module

to Mark Fredrickson (the workflow project maintainer), as he sees the future of such

functionality close to the workflow module itself. My implementation was released as

part of the workflow module suite in it’s version 5.x-1.1 [43].

6.4.2 CAT Based Workflows

While searching for some previous examples of HTML to XLIFF and XLIFF to HTML

conversion, I found XSLT sheets developed by Bryan Schnabel [44] available under the

GNU GPL licence, which was a perfect fit for Drupal. Based on the XSLT sheets, I was

able to implement a conversion tool which adapts Drupal to a Computer Aided Translation

based workflow and provides export and import functionality in the industry standard

59

6.4. TRANSLATION WORKFLOW

Figure 6.6: Exported XLIFF editing in Heartsome XLIFF Translation Editor

XLIFF format. To allow for the largest flexibility and given that Drupal content objects

usually contain a small amount of formatting to export into a skeleton, a maximalist

extraction method was implemented.

The XLIFF tools extension [45] handles simple content types with a title and a body

and maps the title to the HTML page title and the body to the HTML page body. The

conversion component identifies document segments to generate an XLIFF document for

download. The uploaded XLIFF document is assembled back to an HTML structure, from

which the title and body are extracted for submission into the Drupal content database.

I have implemented a configurable workflow action to allow disabling and enabling of

XLIFF import and export functionality at any transition of a complex workflow. I have

tested my implementation with a sample workflow, enabling XLIFF import only when

having a document in the draft state and allowing export only when in a “to translator”

state.

60

6.5. EVALUATION

6.5 Evaluation

Through working on my thesis, I was able to present plans and implementations on the

areas defined in the previous chapter. Most of my results are already available in the

development version of Drupal 6, while others are hosted as contributed modules that are

downloadable separately to extend base functionality.

Figure 6.7: Recap of the planned Drupal language architecture

Installer language Drupal 5 included my improvements to have language selection in

the installer. The translation template generation scripts I extended to support

generation of installer templates were used in the community in practice.

Translation import I developed the autolocale module [40] for Drupal 5, and brought

its functionality to the Drupal 6 base system with Yves Chedemois and Jakub Suchy.

Enable language functionality Drupal 5 is shipped with features I developed to detect

when language functionality is required and initialize it for web site administrators.

Local functionality By implementing a custom install profile, I distributed the Hungar-

ian interface translation with local functionality for Hungarian date format support

and features for common hosts, beginning with Drupal 5.1 [38].

61

6.5. EVALUATION

Language management and selection Developed with Jose A. Reyero, this new fea-

ture is included in the development version of Drupal 6 and fulfills all requirements

set in the plans.

Dynamic text translation Backend modifications to support different “text groups”

are included in the Drupal 6 development version. The actual object translation API

is implemented in the open development environment sponsored by Development

Seed [46], and the feature is proposed for inclusion in Drupal 6. Due to limited

reviewer capacity and the extensive changes proposed, the acceptance of this feature

is not yet known. Requirements to provide custom user interface controls for specific

properties of objects are not implemented, but the design is open for pluggable user

interface providers.

Content language The content language improvements developed with Jose A. Reyero

are already included in the development version of Drupal 6. All requirements were

met, in fact additional features are included to provide better overview possibilities

of content languages on the administration interface.

Content translation Implementation of the requirements set out for content translation

is ready in the open development environment sponsored by Development Seed [46],

and the feature is proposed for inclusion in Drupal 6. Fortunately (unlike the

dynamic text translation), the implementation of the language technologies allow

this feature to live on as a contributed module because it does not require system

level changes to function. The acceptance of this feature into Drupal 6 is not yet

known.

Workflow based permissions I contributed the workflow-based access-control imple-

mentation to the workflow module maintainer, and it was released in Workflow 5.x-

1.1 [43]. It allows for state based permission setting, which implements solutions

for the requirements set out in my plans.

CAT interface I implemented and released the XLIFF Tools module [45] for Drupal 5

that allows interaction with computer aided translation tools, and plugs into work-

flows by restricting functionality to what makes sense in the implemented workflow.

Through working in these areas, I presented source code patches to change and expand

on several aspects of how Drupal works. Provided annotated screenshots to illustrate my

changes as well as created video demonstrations of the process of how specific features

work and impact Drupal site builders. Some examples:

62

6.5. EVALUATION

• Annotated screenshots of the text translation interface: http://groups.drupal.

org/files/localecritic.jpg from http://groups.drupal.org/node/3916

• Screenshot montage of node language support: http://drupal.org/files/issues/

nodelanguage.png from http://drupal.org/node/137376

• Video demonstration of install time interface translation import: http://hojtsy.

hu/drop/DrupalInstaller.avi from http://drupal.org/node/141637

• Video demonstration of dynamic text translation: http://hojtsy.hu/drop/dtvideo.

mpeg from http://drupal.org/node/139970

63

Chapter 7

Summary, Future Directions

In my thesis I have examined the special requirements of multilanguage web sites and pre-

sented technical and cultural difficulties and some existing best practices to the outlined

problems. Then I presented some content management systems used in multilanguage

scenarios with different project requirements, selecting Drupal for my implementation.

Finally I documented plans derived from the requirements identified earlier and presented

implementations for the specific needs.

Multilanguage web projects provide a very wide range of possible requirements. While

I stuck to several key areas in my thesis, actual implementations might involve more

specific needs, for which I tried to provide some starting points. Although the open

source content management system market is very crowded, I also needed to restrict my

scope by selecting a few of the available solutions to examine deeply, therefore representing

different approaches to multilanguage support.

Most of the improvements that I have planned and implemented with some members

in the community are now part of the upcoming Drupal 6 release, while some of them are

released as contributed modules to extend the currently stable Drupal 5 system.

Due to the positioning of the release cycle and the limited reviewer capacity of the

Drupal community, not all of the improvements implemented for the system have been

included in the base runtime, as of this writing. The Drupal 6 code base is still open for

new features and fixes, so further development will continue after I submit my thesis.

Different multilingual projects have very different needs, but there are some general

directions of improvement where my work has potential to grow. Shared content properties

between translations of the same content object and more focused user interfaces for online

translation are areas in which future Drupal versions should provide solutions.

The improvements I presented will allow Drupal 6 users to set up web sites in languages

64

with right to left written scripts (such as Arabic), assign languages to their content and

translate documents on the web site. Workflow based permissions and computer aided

translation interfacing tools will enable them to utilize Drupal in a professional multilan-

guage publishing scenario. The existing i18n and localizer module suite maintainers are

already committed to porting their extensions and solutions to serve even wider needs on

top of the new Drupal 6 architecture.

While working on my thesis, Google announced its Google Summer of Code pro-

gram [47] for 2007, in which the Drupal development community is participating as a

mentoring organization. I submitted an application [48] to further improve localization

tools used by translators of the system worldwide and was accepted along the 20 other

students under the Drupal umbrella. This means that I will further improve the multilan-

guage toolset around Drupal by working on project management support for translation

teams and a community-oriented web based translator interface to hide the difficulties of

version control systems and GNU Gettext based translations.

Given that programmatically extensive changes and new programming interfaces have

been introduced into the system in combination with a simple-to-use web based interface,

I hope that more developers will implement language tools. I also hope that it will

help them to be aware of multilanguage issues so they develop their extension modules

with internationalization in mind, further advancing the set of solutions for web site

implementors.

65

Acknowledgements

• Thanks to my consultant, Péter Hanák, for his guidance and direct suggestions

throughout my work. My thesis would not have been this complete without the

reviewer tips provided by Dries Buytaert, Eric Gundersen and Péter Adamkó.

• I would like to thank Development Seed for infrastructure support for the interna-

tionalization work done for Drupal 6. Their subversion repository and mailing list

setup provided a discussion forum and a temporary Drupal fork to work on safely

and in the open, while Drupal development progressed.

• Thanks to the Hungarian Drupal user community for testing my new packaging for-

mat and import solutions for interface translations and providing valuable feedback

on how can it be improved. Jakub Suchy did a great job as an early adopter within

the Czech community and provided fixes and improvements for the code.

• I had the pleasure to collaborate with Jose A. Reyero, Károly Négyesi, Dries Buy-

taert, Steven Wittens and Doug Green on the language management functionality

for Drupal 6. Content and dynamic text translation functionality was developed in

collaboration with Jose A. Reyero.

• And last but not least, I would like to thank Bonnie Bogle for reading and copy

editing my thesis.

x

Glossary

API Application Program Interface. A set of calling conventions that allow access to

specific services.

ASCII American Standard Code for Information Interchange. A character encoding

based on the English alphabet.

CAT Computer Aided Translation. A process of reusing existing translation memories.

CSS Cascading Style Sheets. Allows for specification of presentational information,

mostly for web pages.

CMF Content Management Framework. A set of programs and APIs used to build

customized content management solutions.

CMS Content Management System. A set of programs used to manage web site content,

users, presentation, and more.

FTP File Transfer Protocol. A plain text based protocol used to transfer files.

HTML Hypertext Markup Language. A language used to produce web pages.

HTTP Hypertext Transfer Protocol. The base protocol of all communication on the

web.

ICANN Internet Corporation for Assigned Names and Numbers. Responsible for the

global coordination of the internet’s system of unique identifiers.

IDNA Internationalized Domain Names in Applications. A domain name format that

allows for Unicode character representation.

IRI Internationalized Resource Identifier. Extension of the URI concept with support

for Unicode characters.

xi

ITS Internationalization Tag Set. A W3C recommendation that specifies common tags

for marking up XML documents for localization.

LISA The Localization Industry Standards Association. Group of experts working on

localization standards.

LTR Left to right. A script of a language in which text is written from left to right, such

as the Latin script.

MIME Multipurpose Internet Mail Extensions. Defines a possibly multipart message

structure capable of having non US-ASCII headers and content.

MO Gettext Machine Object. A binary representation of the PO format.

PO Gettext Portable Object. Text file format used to exchange interface translations.

POT Gettext Portable Object Template. Text file format used to provide usually English

source strings for interface translation.

RFC Request For Comments. A series of memoranda encompassing new research, inno-

vations, and methodologies applicable to internet technologies.

RSS Really Simple Syndication. An XML based format used to share content items

between web sites and applications.

RTL Right to left. A script of a language in which text is written from right to left, such

as the Arabic script.

TLD Top Level Domain Name. The last part of domain names, handled by the root

name servers.

TMX Translation Memory eXchange. A format used to exchange and store existing

translation information.

URI Uniform Resource Identifier. Identifier (typically an address) of a resource (eg. a

web page). Used as a synonym to URL in this thesis, although generally is a broader

term.

URL Uniform Resource Locator. A subset of URIs specifying the location of a resource.

UTF Unicode Transformation Format. A character encoding mapping method for Uni-

code characters.

xii

W3C World Wide Web Consortium. Develops specifications, guidelines, software, and

tools to be used on the web.

WCMS See CMS.

WebDAV Web-based Distributed Authoring and Versioning. Aims to make the WWW

a readable and writable medium.

XLIFF XML Localization Interchange File Format. An industry standard used for trans-

lation information interchange.

XSLT Extensible Style Language Transformation. An XML based declarative transfor-

mation language to transform XML documents into other XML documents.

xiii

List of Figures

2.1 Types of foreign language based web sites 12

2.2 Computer Aided Translation workflow with “minimalist” approach 17

3.1 Image control on the original content editor page (arranged horizontally) . 20

3.2 Image control on the translation page . 21

3.3 Database model of JoomFish with some sample data 21

3.4 Alternative page languages and layers of languages for a page component . 23

3.5 Database model of the multilanguage content integration method 24

3.6 LinguaPlone handles translations as first class objects having relations . . . 26

3.7 Content instances are related to a translation set in i18n module 29

3.8 Content instances are related to a parent content in localizer 30

5.1 Drupal architecture . 40

5.2 Planned Drupal language architecture . 41

5.3 New functionality required in Drupal Installer 43

5.4 Maximalist XLIFF transformation method planned for Drupal 49

6.1 The structure of the Hungarian translation package 52

6.2 Language management interface in Drupal 6 54

6.3 Language negotiation options in Drupal 6 55

6.4 Translation sets with revision tracking . 56

6.5 Sample translation workflow implemented 58

6.6 Exported XLIFF editing in Heartsome XLIFF Translation Editor 60

6.7 Recap of the planned Drupal language architecture 61

xiv

List of Tables

2.1 Polish plural forms example . 14

4.1 Language selection comparison . 36

4.2 Interface translation and localization comparison 36

4.3 Content translation comparison . 37

xv

Bibliography

[1] Portal do Governo Brasileiro, http://www.brasil.gov.br/.

[2] W3C Internationalization (I18n) Activity, http://www.w3.org/International/.

[3] Practical & Cultural Issues in Designing International Web Sites, Richard Ishida,

Fundamentos Web 2006 Conference, Oviedo, Asturias, Spain, 3 October 2006, http:

//www.w3.org/2006/Talks/fundamentos-web-ri/.

[4] Uniform Resource Identifier (URI): Generic Syntax RFC, January 2005, ftp://ftp.

rfc-editor.org/in-notes/rfc3986.txt.

[5] Internationalized Resource Identifiers (IRIs), January 2005, ftp://ftp.

rfc-editor.org/in-notes/rfc3987.txt.

[6] An Introduction to Multilingual Web Addresses, 2 December 2006, http://www.w3.

org/International/articles/idn-and-iri/.

[7] ICANN Successfully Conducts Laboratory Tests of Internationalised Do-

main Names, 7 March 2007, http://www.icann.org/announcements/

announcement-4-07mar07.htm.

[8] Hypertext Transfer Protocol – HTTP/1.1 RFC, June 1999, http://www.

rfc-editor.org/rfc/rfc2616.txt.

[9] Multipurpose Internet Mail Extensions (MIME) RFC, November 1996, ftp://ftp.

rfc-editor.org/in-notes/rfc2045.txt.

[10] Unicode Home Page, http://www.unicode.org/.

[11] Character sets & encodings in XHTML, HTML and CSS, 2 February 2006, http:

//www.w3.org/International/tutorials/tutorial-char-enc/en/index.html.

xvi

BIBLIOGRAPHY

[12] HTML 4.01 Specification, W3C Recommendation, 24 December 1999, http://www.

w3.org/TR/html4/.

[13] BCP 47: Tags for Identifying Languages (RFC 4646) and Matching of Language

Tags (RFC 4647), September 2006, http://www.w3.org/International/core/

langtags/rfc3066bis.

[14] Language tags in HTML and XML, 9 November 2006, http://www.w3.org/

International/articles/language-tags/Overview.en.php.

[15] Cascading Style Sheets, level 2, W3C Recommendation, 12 May 1998, http://www.

w3.org/TR/REC-CSS2/.

[16] Script direction and languages, 20 November 2006, http://www.w3.org/

International/questions/qa-scripts.en.php.

[17] Text Expansion (or Contraction), http://www.omnilingua.com/resourcecenter/

textexpansion.aspx.

[18] Designing Web Usability: The Practice of Simplicity, Jakob Nielsen, New Riders

Publishing, Indianapolis, December 20, 1999, ISBN 1-56205-810-X, pp. 312-344.

[19] Looking for internationalization use cases, 4 October 2006, http://groups.drupal.

org/node/1545.

[20] Polish translation of Drupal’s aggregator module, http://cvs.drupal.org/

viewcvs/drupal/contributions/translations/pl/aggregator-module.po.

[21] GNU Gettext, http://www.gnu.org/software/gettext/.

[22] The Localization Industry Standards Association, http://www.lisa.org/.

[23] Internationalization Tag Set (ITS) Version 1.0, 3 April 2007, http://www.w3.org/

TR/2007/REC-its-20070403/.

[24] Systran, http://www.systransoft.com/.

[25] SDL Trados, http://www.trados.com/.

[26] Joomla, http://www.joomla.org/.

[27] Packt Open Source Content Management System Award, http://www.packtpub.

com/award.

xvii

BIBLIOGRAPHY

[28] JoomFish, http://www.joomfish.net/.

[29] Feature planning for Joom!Fish 1.8, 5 September 2006, http://forum.joomla.org/

index.php/topic,61981.msg466467.html#msg466467.

[30] TYPO3, http://typo3.com/.

[31] T3locallang Documentation, http://typo3.org/documentation/

document-library/core-documentation/doc core api/4.0.0/view/7/2/.

[32] New module to facilitate translations of web sites in TYPO3, March

23, 2007, http://www.ditnetwork.de/startseite/einzelansicht/mitglied///

/866cdb41e7/articel/23/106.html.

[33] Plone, http://plone.org/.

[34] GNOME.org CMS selection, October 31, 2006, http://live.gnome.org/GnomeWeb/

CmsRequirements.

[35] Drupal, http://drupal.org/.

[36] Multilingual content-management with LinguaPlone, Geir Bækholt and Helge Tes-

dal, Plone Conference 2004, Vienna, 29 September 2004, http://plone.org/news/

linguaplone-tutorial.

[37] Pro Drupal Development, John K. VanDyk and Matt Westgate, Apress, Berkeley,

California, April 16, 2007, ISBN 1-59059-755-9.

[38] Hungarian Drupal install profile, http://drupal.hu/files/hu-5.1.tar.gz.

[39] Hungarian locale functionality (mini modules), http://drupal.org/project/

hungarian.

[40] Auto locale import module for Drupal, http://drupal.org/project/autolocale.

[41] Content Construction Kit, http://drupal.org/project/cck.

[42] Introduce dynamic object translation API, http://drupal.org/node/141461.

[43] Drupal Workflow module, version 5.x-1.1, April 26, 2007 http://drupal.org/node/

139438.

[44] xliffRoundTrip Tool, https://sourceforge.net/projects/xliffroundtrip/.

xviii

BIBLIOGRAPHY

[45] XLIFF Tools, http://drupal.org/project/xliff.

[46] Infrastructure for the i18n group, http://groups.drupal.org/node/2858.

[47] Google Summer of CodeTM, http://code.google.com/soc/.

[48] Tools for Drupal translation teams and users, http://code.google.com/soc/

drupal/appinfo.html?csaid=CCB11E7904E4B8C5.

xix

